
Tessellation Operating System
Building a real-time, responsive, high-throughput client OS 

for many-core architectures

2. Design Principles

Juan A. Colmenares,1 Sarah Bird,1 Gage Eads,1 Steven Hofmeyr,2 Albert Kim,1 Rohit Poddar,1 Hilfi Alkaff,1 Krste Asanović,1 and John Kubiatowicz1

1 Par Lab, UC Berkeley  – 2 Future Technologies Group, LBNL

•Spatial Partition: Key for performance isolation
• Hard boundaries and controlled communication between partitions

•Each partition receives a vector of basic resources:
• A number of hardware threads, a portion of physical memory, 
cache segments, and memory bandwidth

•A partition may also receive
• Exclusive access to other resources (e.g., a hardware device and 
raw storage partition)
• Guaranteed fractional services from other partitions (e.g., network 
service)

•Spatial partitioning is not static; it may vary over time
•Partitioning adapts to needs of the system
•Partitions can be time multiplexed; resources are gang-scheduled

Parallel Computing 
Laboratory

1. Basic Goals 4. Beneficial Hardware Enhancements 

Research supported by Microsoft Award #024263, Intel Award #024894, matching U.C. Discovery 

funding (Award #DIG07-102270), and DOE ASCR FastOS Grant #DE-FG02-08ER25849

• Support a dynamic mix of high-throughput parallel, interactive, and real-time 
applications
• Allow applications to consistently deliver performance in presence of other 
applications with conflicting requirements
• Enable adaptation to changes in the application mix and resource availability

Level 1
Coarse-grained Resource 
Allocation and Distribution

Level 2
Fine-grained Application-
specific Scheduling

• Channel virtualization enables use by multiple cells
• Hardware-based protection, translation, and message-processing 
mechanisms minimize kernel intervention
• QoS guarantees in the channel state, enforced in QoS block

Two-level Scheduling

• Chunks of resources distributed to application or 
system components
•Option to simply turn off unused resources

Space-Time Partitioning

• Applications utilize their resources in any way they 
see fit
•Other components of the system cannot interfere 
with their use of resources

•Applications = Set of 
interacting components 
deployed on different cells
• Applications split into 
performance-incompatible 
and mutually distrusting cells
• OS services are independent 
agents that provide QoS

Hardware-acceleration for Inter-cell Channels

Hardware Partitioning Mechanisms

• Provide stronger performance isolation between cells
• Besides those found on commodity hardware, we propose the use 
of the following mechanisms:

Memory Hierarchy 
Bandwidth Partitioning

Way- and Bank-Based 
Cache Partitioning

•Globally Synchronized Frames (GSF)
• A frame-based QoS System

• An allocation of flits are guaranteed 
to each core per frame (time window)
• Excess flits in a frame are shared 

• Two types of cache partitioning allow 
for a wide variety of configurations
• Applications can be assigned cache 
slices – particular ways in a given bank
• Cache slices can be reassigned to 
represent the changing needs of the 
system

•User-level software container with 
guaranteed access to resources

Component-based Model with 
Composable Performance

Improves efficiency of inter-cell communication

Reference: J. W. Lee et al. “Globally Synchronized Frames for 
Guaranteed Quality-of-Service in On-Chip Networks,” ISCA 
2008

Source: 
J. W. Lee et al. 

4. Resource-management Software Architecture 

5. Implementation Status

3. The Cell: Our Partitioning Abstraction

• Partitioning support
• Cores, caches (via page coloring), and memory bandwidth partitioning (on 

RAMP simulator)

• Inter-cell channels (via ring buffers in shared memory)
• Hardware channels implementation currently under development on RAMP 

simulator

• User-level frameworks for implementing 
• Composable cooperative schedulers (i.e., Lithe)
• Preemptive schedulers (e.g., EDF)

• Basic Services
• Network Service consisting of a device driver and TCP/IP stack
• File Service, GUI Service, and Policy Service are under development

• Gang Scheduling for Cells
• Implemented a communication-free version and a centralized version

• Currently two ports
• Intel x86 platforms (e.g., 32-core Nehalem system)
• FPGA-based simulation of 64 1-GHz SPARC V8 cores (RAMP Gold)

• Current prototype was derived from an early version of Akaros
(http://akaros.cs.berkeley.edu)

•Basic properties of a cell
–Full control over resources it 

owns when mapped to 
hardware
–One or more address spaces 

(protection domains)
–Efficient inter-cell 

communication channels

Kernel
User-level

Runtime Support
Network Service

(including TCP/IP stack)

~35K LOC ~10K LOC ~40K LOC

http://tessellation.cs.berkeley.edu


