
R. Curtis Harting 

Vishal Parikh 

Prof. William J. Dally 

The Utility of Fast Active Messages on Many-Core Chips 

• Barrier: Comparing a 

hierarchical barrier made 

with pthread_barrier calls to 

an active messaging version 

• Contended: Each thread 

randomly updates 1 of 256 

random variables 

• Walking: Each thread 

randomly selects a block of 

64 (or 16) entries in a large 

array and sums (or writes) 

them. 

 

• Kmeans: Significant 

reduction in the energy and 

time to do the reduction 

step 

• BFS:  Speedup from 

overlapping queries and 

removing globally contended 

variables 

• Hash Table: Moving the data 

without active messages 

thrashes the L1 cache 

• Radix: The Splash version 

does not fit in the cache.  

The AMs suffer from 

overhead in doing updates 

In the first version of our 

AM BFS implementation, 

we sent a message for 

each neighbor node, 

regardless of if they had 

been discovered.  This 

sent too many messages.  

We now use the cache 

coherency protocol to 

keep a read-shared global 

array of visited nodes, 

only sending messages 

when necessary. 
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• Energy efficiency constrains 

performance 

• Data movement significantly 

impacts program execution 

energy and latency 

• Cache coherency enables 

programmability, but 

obfuscates locality 

• Active messages – the act of 

sending a message that 

triggers a handler at a remote 

node – allows for 

programmers to reason about 

locality while still maintaining  

the programmability of cache 

coherence 

• Messages are sent to the 

home node of the 

destination address 

• Handlers are atomic at 

destination, but must 

run to completion 

• Cache coherent shared 

memory programming 

model and hardware 

• User visible and 

customizable 
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Active messages invoke an atomic software handler at their 

destination. They allow the user to manage locality and overlap 

computation with communication, increasing energy efficiency 

and decreasing execution time. 
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An active message itself is a user defined 

structure with the following fields: 

• Destination Address – Messages are sent to 

the home node of this address, typically that 

of the targeted object 

• Handler Selector – The handler function to be 

ran at the remote node 

• Size – the size of the message 

• Optional Arguments – Provided by the user 

Name Size Reduction Contended Data Walk 

Hash Table 512k 

Operations 

  

Kmeans 8k & 131k 

Points 

 

Radix Sort 1M 

elements 

  

Breadth 

First Search 

262k Nodes 

 

  

Benchmarks • We use a custom timing 

simulator with a PIN* frontend 

• Each benchmark was hand 

coded with and without active 

messages 

• Unless noted, our baseline 

configuration has 256 cores 

with  256-16kB L1 caches, 16-

500kB L2 caches, and a 16MB 

L3 cache 

Speedup Normalized to Pthreads Energy Normalized to Pthreads 

Speedup Energy Network Traffic 

Speedup Normalized to Pthreads (PT) Energy Normalized to Pthreads (PT) In many programs, the end of a computation iteration is marked by a barrier 

or reduction step.  Each core atomically modifies one or more global cache 

lines, signaling completion.  This reduction computation can be simple or 

complex, ranging from a barrier to the bucket count updates in radix sort. 

When multiple threads update a contended object, they must each 

acquire a lock and  move the object to the L1 cache.  Multiple threads 

performing this sequence at once leads to cache thrashing.  Active 

messages remove this problem by atomically updating the object in a 

single location. 

Traversing data structures without reuse wastes energy as the data is 

brought across the network and into the L1, polluting the cache.  Active 

messages can be sent to the data, removing this costly movement. 

struct AM_Header{ 

    void * daddr; 

    void (*ip)(void *, void *); 

    int size; 

}; 

struct AM_hash{ 

    AM_Header head; 

    AM_Reply* replyAddr; 

    long key; 

    long value; 

    [enum] FUNC function; 

}; 

bool HashAM::insert(long key,  

long value){ 

  long hashVal =  

            hashFunction(key); 

  AM_hash* amh; 

  //Setup the active message 

  AM_Assemble(amh,  

    /*destination*/ 

    &(hash_bkts[hashVal]), 

    key, value, INSERT); 

  AM_Send(&(amh->head)); 

  AM_wait_for_reply(replyAddr); 

 return (reply != 0); 

} 

void am_handler(void * daddr,  

             void * msg){ 

    AM_hash * amh = msg; 

   switch(amh->function){ 

      case GET:  …  
      case CONTAINS: ... 

      case INSERT:  

      retVal =  amh->hashTable->        

        insert(amh->key,  

         amh->value);  

    break; 

    ase DEL:  …  
    } 

    AM_SendReply(amh, retVal); 

} 

This code example shows the 

implementation of a hash table insert 

function with active messages 

• Sender hashes the value, 

assembles the AM, sends the 

AM, and waits for a response 

• Handler parses the message 

and calls  single threaded 

version of insert 

• The handler sends a reply 

indicating insert success 

• Each core is 2-way multithreaded:  One 

thread for the AM handler, and one 

thread for execution 

• Short Active Messages are assembled 

in a specialized Active Message 

Register File (AMRF).  The AMRF has a 

much lower energy per access than the 

L1 cache 

• Incoming messages are queued into 

the L1 cache.  If necessary, messages 

are buffered into the memory 
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Energy

When threads hit a standard 

barrier (left), the data moves in 

serial and random fashion from 

core to core.  Active messages 

(right) send the data in parallel 

to a single core.  This eliminates 

the energy and delay of data 

movement. 

The sending core sends 2 

messages to the receiver in 

rapid succession (1).  When 

the first message arrives (2), 

the handler executes. The 

second message is queued (3) 

when it arrives.  The sender 

can either sleep waiting for a 

response or continue 

executing code (4).   The 

handler sends a response (5), 

completes, pops the waiting 

queue, and executes the 

second function (6).   

Kmeans Speedup 
Hash Table Speedup 
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Active messages provide better performance scalability.  Bottlenecks are a smaller part of the execution time, 

lesse i g the effe t of A dahl’s Law.  The e ergy of the hash ta le increases with more cores in the baseline, as 

data must be moved longer distances.  The AM version consumes less energy because the distributed  hash table 

can fit into the L1 cache.  All graphs are normalized to the 16 core version of a specific (AM or PT) implementation.   
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Handler 

Thread 
Exe 

Thread 

We provide the following C++ function calls and libraries for active messaging: 

• AM_Send(AM_Header* head): Sends the active message pointed to in the 

argument.  The hardware reads the length field and immediately copies the 

message into the network.  After this function call, the caller can overwrite 

the message with no side effects. 

• AM_Wait_For_Reply(int* replyAddr): Causes the thread to sleep until the 

int pointed to by replyAddr is non-zero and resets it to 0. 

• Handler_Function(void * daddr, void * msg): The user written handler 

function that runs atomically and may not block.  The arguments, which 

must be statically cast, are the destination object and message itself.  

Called by the hardware via the handler selector 

• We provide libraries for barriers and locks. 

 

In the many core era, power has become the limiting 

factor in performance scaling.  This poster demonstrates 

the ability of active messages to increase the energy 

efficiency of parallel code. 

• Active messages allow the user to manage data 

locality and communication 

• Integrating active messages with cache coherency 

simplifies programming 

• We have targeted and improved three key parallel 

programming idioms: reductions, contention, and 

data walks. 

• Active messages enable significant runtime, 

efficiency, and scalability improvements in 

benchmarks. 
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*C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.  Pin: building customized program analysis tools 

with dynamic instrumentation. SIGPLAN Not., 40:190–200, June 2005. 
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