
R. Curtis Harting

Vishal Parikh

Prof. William J. Dally

The Utility of Fast Active Messages on Many-Core Chips

• Barrier: Comparing a

hierarchical barrier made

with pthread_barrier calls to

an active messaging version

• Contended: Each thread

randomly updates 1 of 256

random variables

• Walking: Each thread

randomly selects a block of

64 (or 16) entries in a large

array and sums (or writes)

them.

• Kmeans: Significant

reduction in the energy and

time to do the reduction

step

• BFS: Speedup from

overlapping queries and

removing globally contended

variables

• Hash Table: Moving the data

without active messages

thrashes the L1 cache

• Radix: The Splash version

does not fit in the cache.

The AMs suffer from

overhead in doing updates

In the first version of our

AM BFS implementation,

we sent a message for

each neighbor node,

regardless of if they had

been discovered. This

sent too many messages.

We now use the cache

coherency protocol to

keep a read-shared global

array of visited nodes,

only sending messages

when necessary.

Micro-benchmarks

Benchmarks

Using Cache Coherency

Scalability

Barriers & Reductions

Contended Objects

Data Walks

Core

33%

L2 & L3

Caches

2%

L1Cache

11% DRAM

12%

Network

[Data

Move-

ment]

42%

Energy Usage of Splash 2* Radix Sort

*S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The splash-2 programs: characterization and methodological considerations. SIGARCH Comput.

Archit. News, 23:24–36, May 1995

• Energy efficiency constrains

performance

• Data movement significantly

impacts program execution

energy and latency

• Cache coherency enables

programmability, but

obfuscates locality

• Active messages – the act of

sending a message that

triggers a handler at a remote

node – allows for

programmers to reason about

locality while still maintaining

the programmability of cache

coherence

• Messages are sent to the

home node of the

destination address

• Handlers are atomic at

destination, but must

run to completion

• Cache coherent shared

memory programming

model and hardware

• User visible and

customizable

1-1) Load Lock

1-2) Load Data

1-3) Execute

1-4) Unlock

(invalidates)

2-1) Load Lock

2-2) Test & Wait

2-3) Load Lock,

again

2-4) Load Data

2-5) Execute

1-1) Assemble AM

1-2) Send AM

1-3) Do other work

or wait

1-4) Receive

Response

2-1) Assemble AM

2-3) Do other work

or wait

2-4) Receive

Response

2-2) Send AM

H-1) Receive AM1

H-2) Execute AM1

H-3) Receive AM2

H-4) Enqueue AM2

H-5) Reply AM1

H-6) Dequeue AM2

H-7) Execute AM2

H-8) Reply AM2

Thread 1 Thread 2Home Thread 1 Thread 2Home

Home A Home BThread Home A Home BThread

Block transfer

data, execute

locally

Send AM,

execute

remotely

Active messages invoke an atomic software handler at their

destination. They allow the user to manage locality and overlap

computation with communication, increasing energy efficiency

and decreasing execution time.

Active Message

Header

Destination Address

Handler

Selector
Size

 int Arg1

double Arg2[3]

 Foo * Arg3

An active message itself is a user defined

structure with the following fields:

• Destination Address – Messages are sent to

the home node of this address, typically that

of the targeted object

• Handler Selector – The handler function to be

ran at the remote node

• Size – the size of the message

• Optional Arguments – Provided by the user

Name Size Reduction Contended Data Walk

Hash Table 512k

Operations

Kmeans 8k & 131k

Points

Radix Sort 1M

elements

Breadth

First Search

262k Nodes

Benchmarks • We use a custom timing

simulator with a PIN* frontend

• Each benchmark was hand

coded with and without active

messages

• Unless noted, our baseline

configuration has 256 cores

with 256-16kB L1 caches, 16-

500kB L2 caches, and a 16MB

L3 cache

Speedup Normalized to Pthreads Energy Normalized to Pthreads

Speedup Energy Network Traffic

Speedup Normalized to Pthreads (PT) Energy Normalized to Pthreads (PT) In many programs, the end of a computation iteration is marked by a barrier

or reduction step. Each core atomically modifies one or more global cache

lines, signaling completion. This reduction computation can be simple or

complex, ranging from a barrier to the bucket count updates in radix sort.

When multiple threads update a contended object, they must each

acquire a lock and move the object to the L1 cache. Multiple threads

performing this sequence at once leads to cache thrashing. Active

messages remove this problem by atomically updating the object in a

single location.

Traversing data structures without reuse wastes energy as the data is

brought across the network and into the L1, polluting the cache. Active

messages can be sent to the data, removing this costly movement.

struct AM_Header{

 void * daddr;

 void (*ip)(void *, void *);

 int size;

};

struct AM_hash{

 AM_Header head;

 AM_Reply* replyAddr;

 long key;

 long value;

 [enum] FUNC function;

};

bool HashAM::insert(long key,

long value){

 long hashVal =

 hashFunction(key);

 AM_hash* amh;

 //Setup the active message

 AM_Assemble(amh,

 /*destination*/

 &(hash_bkts[hashVal]),

 key, value, INSERT);

 AM_Send(&(amh->head));

 AM_wait_for_reply(replyAddr);

 return (reply != 0);

}

void am_handler(void * daddr,

 void * msg){

 AM_hash * amh = msg;

 switch(amh->function){

 case GET: …
 case CONTAINS: ...

 case INSERT:

 retVal = amh->hashTable->

 insert(amh->key,

 amh->value);

 break;

 ase DEL: …
 }

 AM_SendReply(amh, retVal);

}

This code example shows the

implementation of a hash table insert

function with active messages

• Sender hashes the value,

assembles the AM, sends the

AM, and waits for a response

• Handler parses the message

and calls single threaded

version of insert

• The handler sends a reply

indicating insert success

• Each core is 2-way multithreaded: One

thread for the AM handler, and one

thread for execution

• Short Active Messages are assembled

in a specialized Active Message

Register File (AMRF). The AMRF has a

much lower energy per access than the

L1 cache

• Incoming messages are queued into

the L1 cache. If necessary, messages

are buffered into the memory

hierarchy

0

2

4

6

8

10

12

14

PT

Hier

AM

Hier

PT AM PT 64

Var

AM

64

Var

PT 16

Var

AM

16

Var

Barrier Contended

256 Var

Walking

Reads

Walking

Writes

S
p

e
e

d
u

p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PT

Hier

AM

Hier

PT AM PT 64

Var

AM

64

Var

PT 16

Var

AM

16

Var

Barrier Contended

256 Var

Walking

Reads

Walking

Writes

E
n

e
rg

y

Network

DRAM

L1Cache

L2/L3 Cache

Core

Energy

When threads hit a standard

barrier (left), the data moves in

serial and random fashion from

core to core. Active messages

(right) send the data in parallel

to a single core. This eliminates

the energy and delay of data

movement.

The sending core sends 2

messages to the receiver in

rapid succession (1). When

the first message arrives (2),

the handler executes. The

second message is queued (3)

when it arrives. The sender

can either sleep waiting for a

response or continue

executing code (4). The

handler sends a response (5),

completes, pops the waiting

queue, and executes the

second function (6).

Kmeans Speedup
Hash Table Speedup

0

16

32

48

64

PT 16 PT 64 PT

256

PT

1024

AM

16

AM

64

AM

256

AM

1024

S
p

e
e

d
u

p
 (

N
o

rm
a

li
ze

d
 t

o
 1

6
 C

o
re

s)

0

16

32

48

64

PT

16

PT

64

PT

256

PT

1024

AM

16

AM

64

AM

256

AM

1024

S
p

e
e

d
u

p
 (

N
o

rm
a

li
ze

d
 t

o
 1

6
 C

o
re

s)

0

0.5

1

1.5

2

2.5

3

P
T

 1
6

P
T

 6
4

P
T

 2
5

6

P
T

 1
0

2
4

A
M

 1
6

A
M

 6
4

A
M

 2
5

6

A
M

 1
0

2
4

E
n

e
rg

y
 (

N
o

rm
a

li
ze

d
 t

o
 1

6
 C

o
re

s)

Network

DRAM

L1Cache

L2/L3 Cache

Core

Hash Table Energy

Active messages provide better performance scalability. Bottlenecks are a smaller part of the execution time,

lesse i g the effe t of A dahl’s Law. The e ergy of the hash ta le increases with more cores in the baseline, as

data must be moved longer distances. The AM version consumes less energy because the distributed hash table

can fit into the L1 cache. All graphs are normalized to the 16 core version of a specific (AM or PT) implementation.

Outbound Long AM0

Outbound Long AM1

Inbound AM Queue

L1 Cache

Network Interface

Outbound Short AM0

Outbound Short AM1

AMRF

Core

Handler

Thread
Exe

Thread

We provide the following C++ function calls and libraries for active messaging:

• AM_Send(AM_Header* head): Sends the active message pointed to in the

argument. The hardware reads the length field and immediately copies the

message into the network. After this function call, the caller can overwrite

the message with no side effects.

• AM_Wait_For_Reply(int* replyAddr): Causes the thread to sleep until the

int pointed to by replyAddr is non-zero and resets it to 0.

• Handler_Function(void * daddr, void * msg): The user written handler

function that runs atomically and may not block. The arguments, which

must be statically cast, are the destination object and message itself.

Called by the hardware via the handler selector

• We provide libraries for barriers and locks.

In the many core era, power has become the limiting

factor in performance scaling. This poster demonstrates

the ability of active messages to increase the energy

efficiency of parallel code.

• Active messages allow the user to manage data

locality and communication

• Integrating active messages with cache coherency

simplifies programming

• We have targeted and improved three key parallel

programming idioms: reductions, contention, and

data walks.

• Active messages enable significant runtime,

efficiency, and scalability improvements in

benchmarks.

Rcvr

Core 7 Core 6

Core 2

Core 5 Sender

Core 0 Core 1

1

2

3

6

5

4

*C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building customized program analysis tools

with dynamic instrumentation. SIGPLAN Not., 40:190–200, June 2005.

0

1

2

3

4

5

6

7

8

9

10

P
T

A
M P
T

A
M P
T

A
M P
T

Sp
la

sh

A
M

Kmeans BFS Hash

Table

Radix Sort

S
p

e
e

d
u

p

0

0.5

1

1.5

2

2.5

P
T

A
M P
T

A
M P
T

A
M P
T

Sp
la

sh

A
M

Kmeans BFS Hash

Table

Radix

E
n

e
rg

y

Network

DRAM

L1Cache

L2/L3 Cache

Core

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

E
n

e
rg

y

Network

DRAM

L1Cache

L2/L3 Cache

Core

0

1

2

3

4

5

6

7

8

PT AM

No $

AM

4P$

AM

256P$

S
p

e
e

d
u

p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

PT AM No

$

AM

4P$

AM

256P$

Cache

AMs

