
A Few Ways Can Take You a Long Way

 Implementation Costs

 Array of W ways, B lines/way

 Each way is indexed by a different hash function

 A line can be in only one position per way

 Hits take a single lookup

 Replacements trigger multiple accesses off the critical path that yield

an arbitrarily large number of eviction candidates. Phases:

 Walk: Multiple reads of tag array to find candidates

 Relocations: Move lines to evict desired candidate, make space for new one

 Example:

 Each design is optimized for area*delay*energy

 ZCaches retain hit area, hit latency, hit energy of a 4-way SA cache

 Energy per miss comparable to similarly-associative SA cache

 Performance and Energy-Efficiency

 72 multithreaded & multiprogrammed workloads (SPECCPU2006, OMP, PARSEC)

 32 in-order 1-issue x86-64 cores, 32KB L1I/D, shared 8MB L2 (set-assoc/zcache)

 All L2 caches use hashing (H3)

 Z4/52 improves performance by 7%, full-system energy efficiency by 10%

 Conclusion: ZCaches enable efficient highly-associative caches

 Small number of ways, associativity by increasing replacement candidates

 Costs of high associativity (energy, tag bandwidth) paid only on misses

 Analytical framework shows that associativity depends on number of

replacement candidates, not ways

 Goal: Compare associativity among cache designs independently of

replacement policy

 Eviction priority: Rank of a line given by the replacement policy (e.g.

LRU), normalized to [0,1]

 Higher is better to evict (e.g. LRU line has 1.0 priority, MRU has 0.0)

 Associativity distribution: Probability distribution of the eviction

priorities of evicted lines

 In a zcache, associativity distribution depends only on the number of

replacement candidates (R):

 Independent of ways, workload and replacement policy

 Same behavior as picking uniform random candidates (due to good hashing and

multiple hash functions)

 Caches increasingly critical to CMP performance and power. Trends:

 Increasing LLC size (e.g. Nehalem-EX, 24MB L3, 50%+ chip area)

 Increasing LLC associativity (e.g. Opteron 6100, 32-way L3)

 In set-associative caches,

higher associativity more ways higher latency and energy

 ZCache [MICRO 2010]: Novel cache design that provides very high

associativity cheaply (e.g. 64-associative cache with 4-ways)

 Lower latency and energy consumption

 Interference in shared caches a major problem in CMPs

 Lack of isolation no QoS

 Poor cache utilization degraded performance

 Cache partitioning addresses interference, but current partitioning

techniques (e.g. way-partitioning) have serious drawbacks

 Support few coarse-grain partitions do not scale to many-cores

 Hurt associativity degraded performance

 Vantage [ISCA 2011] solves deficiencies of previous techniques

 Leverages zcache’s high, guaranteed associativity

 Supports hundreds of fine-grain partitions

 Maintains high associativity and strict isolation among partitions

 Enables cache partitioning in many-cores

 Implementation Costs

 Partition Sizes and Associativity

 Vantage partitions most of the cache through the replacement process

 No restrictions on line placement

 Derived from analytical models, providing strict bounds on sizes and interference

 Vantage guarantees rely on caches with guaranteed associativity (e.g. zcache)

 Simulated small (4-core) and large (32-core) systems with shared L2

 Partitioning policy: Utility-based partitioning [Qureshi 2006]

 Assign more space to threads that can use it better

 Partitioning schemes: Way-partitioning, PIPP, Vantage

 Workloads: 350 multiprogrammed mixes from SPECCPU2006 (full suite)

 Performance:

 Churn-based management

 Problem: always demoting from inserting partition does not scale

 Instead, demote to match demotion rate to insertion rate (churn)

 Aperture: Portion of lines to demote from each partition

 Example:

 Aperture depends on partition churn/ size

 Smaller aperture ↔ better associativity

 Stability: Controlling aperture not enough in high churn/size partitions

 Set a max aperture Amax (e.g. 40%); if a partition needs Ai > Amax, let it grow

 Key result: Regardless of number of partitions that need to grow beyond their

targets, the worst-case total growth over their target sizes is bounded and small!

 5% of the cache with R=52, Amax=40%

 Size unmanaged region with that extra slack Stability and scalability are guaranteed

 Feedback-based aperture control

 Adjust aperture by letting partition size (Si)

grow over its target (Ti)

 Need small extra space in unmanaged region

(e.g. 0.5% with R=52, Amax=40%, slack=10%)

 Small implementation costs (see paper for details):

 Directly implementing these techniques is impractical

 Must constantly compute apertures, estimate churns

 Need to know eviction priorities of every block

 Use negative feedback to derive apertures and lines below aperture

 Practical implementation that maintains analytical guarantees

Daniel Sanchez and Christos Kozyrakis, Stanford University

Efficient and Highly Associative Caches with Scalable Partitioning for Many-Core CMPs

ZCache Overview

U

F

N

B

P

A

G

V

C

D

E

K

Z

T

M

X

J

R

H

Q

I

L O S

0

1

2

3

4

5

6

7

Y

5

4

0

A D M

H0

H1

H2

Way 0 Way 1 Way 2

Addr Y A D M

H0 5 5 3 2

H1 4 2 4 5

H2 0 1 7 0

B K X P Z S Addr

3 7 4 2 6 1 H0

6 2 3 3 5 2 H1

1 0 1 5 3 7 H2

Y

A

K X

L M N E

D

B Z

T X G R

M

P S

E Q F K

U

F

N

B

P

A

G

V

C

D

E

K

Z

T

M

X

J

R

H

Q

I

L O S

Y

2
1

3

4

U

F

B

P

A

G

V

C

D

E

K

Z

T

M

X J

R

H

Q

I

L O S

Y

5 3 2 7 4 6 1 4 5 4 5

4 2 5 6 3 3 2

0 1 7 1 0 5 3 1

A B P L N G F N A X Y

D K Z T E E K

M X S X M Q R X A

A N A X Y

D

M X A

Y N Y

0 5 10 15 20 105

…

…

…

…

Time

Way0

Way1

Way2

Way0

Way1

Way2

Way0

Way1

Way2

A
d

d
re

ss
 f

o
r

re
a

d
/w

ri
te

Ta
g

 p
o

rt

o
u

t/
in

D
a

ta
 p

o
rt

o
u

t/
in

Memory bus

Fetch on miss Writeback (if needed) Miss response

Miss Walk Relocations

Initial cache contents and miss

Letters = Cache blocks

Numbers = Hash values

Walk Second-level candidatesFirst-level candidates

Relocations Final cache state

Timeline

J

ZCache

Analytical Associativity Framework

ZCache Evaluation

Vantage Overview

0

10

20

30

40

50

60

Area (mm2)

0

1

2

3

4

5

6

Hit Latency (ns)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Hit Energy (nJ)

0

1

2

3

4

Miss Energy (nJ)

SA 4-way SA 16-way SA 32-way Z 4/16 Z 4/52

-5

5

15

25

ammp_m rand0 cactusADM gmean (72) gmean (10)

IP
C

 i
m

p
ro

v
e

m
e

n
t

v
s

4
-w

a
y

 (
%

)

SetAssoc 32-way Z 4-way/52-rc

-5

0

5

10

15

ammp_m rand0 cactusADM gmean (72) gmean (10)

B
IP

S
/W

 i
m

p
ro

v

v
s

4
-w

a
y

 (
%

)

With R=8, 17% of evictions happen

to the 80% least evictable lines

With R=64, 10-6 of evictions happen

to the 80% least evictable lines

]1,0[,)()(xxxAPxF
R

A

Vantage

Vantage Controller

Vantage Evaluation

Scalable & fine-grain

Strict isolation

Dynamic

Maintains assoc.

Indep. of repl. policy

Simple

Way

partitioning

PIPP

Reconfig.

caches

Page

coloring
Vantage

Partitions whole cache (most)

1) Partition 0 MISS

0.1 0.5 0.4 0.3 0.7 0.1 0.2 0.6 0.1 0.3 0.9 0.2 0.4 0.3 0.7 0.8

Replacement candidates

Eviction

priorities
Evict

Demote (in top 11% of P3)

Partition 0 Partition 1 Partition 2 Partition 3

23% 15% 12% 11%Apertures

2) Partition 1 MISS

0.3 0.6 0.7 0.4 0.1 0.3 0.2 0.8 0.3 0.7 0.4 0.2 0.2 0.7 0.3 0.6

Eviction

priorities
EvictNothing is demoted (all candidates above apertures!)

3) Partition 3 MISS

0.1 0.8 0.2 0.4 0. 0.9 0.2 0.9 0.1 0.3 0.8 0.7 0.4 0.3 0.3 0.6

Eviction

priorities
Evict

Demote (in top 23% of P0) Demote (in top 15% of P1)

4-core CMP, 4-partition L2

32-core CMP, 32-partition L2

Way-partitioning, PIPP degrade

throughput for 45% of workloads

Vantage + 4-way zcache improves throughput

for most workloads (6.2% gmean speedup,

26% for the 50 most memory intensive)

Way-partitioning, PIPP degrade throughput

for most workloads with 64-way caches

Vantage still improves throughput for most

workloads with the same Z4/52 zcache

Way-partitioning VantagePIPP

 Coarse-grain partitions

Strict size

 Slow convergence

 Coarse-grain partitions

 Approximate size

 No convergence

 Fine-grain partitions

 Strict size

 Fast convergence

Vantage

Way-partitioning

Vantage maintains high associativity per partition even in

the worst case

EvictionsInsertions Demotions

Managed

region

Unmanaged

region

Insertions

Partition 0
Unmanaged

region
Partition 1

Partition 2

Partition 3

Evictions

Demotions

Unmanaged

region prevents

interference

Cache Controller

Partition 0

state (256b)

Partition P-1

state (256b)
…

Data

Array

Tag

Array

256 bits of state per partition

Line Address
Coherence/

Valid Bits

Timestamp

(8b)

Tags: Extra partition ID field

Partition

(6b)

Vantage Replacement Logic

Simple logic, ~10 adders and comparators

Logic not on critical path

RA

11

max

Amax

Ai

Ti (1+slack)Ti
Si

Ai

ZCache: An Efficient Highly Associative Cache Design Vantage: Scalable Fine-Grain High-Associativity Cache Partitioning

