Power management architecture of the 2nd generation Intel® Core™ microarchitecture, formerly codenamed Sandy Bridge

Efi Rotem - Sandy Bridge power architect

Alon Naveh, Doron Rajwan, Avinash Ananthakrishnan, Eli Weissmann

Hot Chips Aug-2011

Agenda

- Power management overview
- Intel® Turbo Boost Technology 2.0
- Thermal management
- Energy efficiency
- Average power management
- Platform view
- Summary

High CPU and PG performance Power and energy efficiency

Power management overview

Sandy Bridge power mgmt ID card

Sandy Bridge is:

- 1-4 CPU cores + PG
- Integrated System Agent (SA)
- Sliced LLC shared by all cores/PG
- Ring interconnect + power management link

Package Control Unit (PCU) :

- On chip logic and embedded controller running power management firmware
- Communicates internally with cores, ring and SA
- Monitors physical conditions
 - Voltage, temperature, power consumption
- Controls power states
 - CPU and PG voltage and frequency
 - Controls voltage regulators DDR and system

External power management interface

- Accepts external inputs
 - System power management requests and limits
 - Power and temperature reading
- MSR, MMIO and PECI system bus

Voltage and frequency domains

eap ahead

Two Independent Variable Power Planes:

- CPU cores, ring and LLC
 - Embedded power gates Each core can be turned off individually
 - Cache power gating Turn off portions or all cache at deeper sleep states
- Graphics processor
 - Can be varied or turned off when not active
- □ Shared frequency for all IA32 cores and ring
- □ Independent frequency for PG
- Fixed Programmable power plane for System Agent
 - Optimize SA power consumption
 - System On Chip functionality and PCU logic
 - Periphery: DDR, PCIe, Display

Power performance fundamentals

□ Maximize user experience under multiple constraints

- User Experience (May have different preferences):
 - Throughput performance
 - Responsiveness burst performance
 - CPU / PG performance
 - Battery life / Energy bills
 - Ergonomics (acoustic noise, heat)
- Optimizing around Constraints to meet user preferences
 - Silicon capabilities
 - System Thermo-Mechanical capabilities
 - Power delivery capabilities
 - S/W and Operating system explicit control
 - Workload and usage

Rich set of control knobs for the user and system designer to tailor power - performance preferences

Power management features topology

eap ahead

Intel[®] Turbo Boost Technology 2.0

Power metering

- Power management is based on power metering
- Sandy Bridge implements a digital power meter
 - 3rd generation of power metering in Intel® products
 - Active power Event counters track main building blocks activities
 - 100 Micro arch. event counters apply active energy cost to each event
 - CPU, PG, Ring, Cache, and I/O
 - Static power Leakage and idle as a function of voltage and temperature
- Used for power management algorithms
- Architecturally exposed to software and system
 - For the use of S/W or system embedded controller

What is CPU Turbo

What is Turbo

Turbo enabled product specifications

Source: http://www.intel.com/Assets/PDF/datasheet/324692.pdf

New concept: thermal capacitance

New concept: thermal capacitance

<u>Classic Model</u> Steady-State Thermal Resistance Design guide for steady state

<u>New Model</u> Steady-State Thermal Resistance PG and CPU sharing AND Thermal Capacitance

- Managing of energy budget rolling average
 - Heat sink capacity time constant few sec.
 - Short time constants for power delivery

$$E_{n+1} = \alpha E_n + (1 - \alpha) * (TDP_n - P_n) \Delta t_n$$

- Package energy sharing between CPU and PG
- Multiple sources of controls
 - Software or external embedded controller

PG

Time

More realistic

response to power changes

PCU manages energy budgets over multiple time constants Accumulated energy during idle period used when needed

Intel® Turbo Boost Technology 2.0 - Dynamic

eap ahead

Usage Scenario: Responsive Behavior

- Interactive work benefits from Intel® Turbo Boost 2.0
- Idle periods intermixed with user actions

Turbo controls in action

(intel Leap ahead

Intel® Turbo Boost Technology 2.0 - Package

- Power specification is defined for the entire package
 - Monolithic die power budget shared by CPU and PG
 - Sum of component power at or below specifications

Intel® Turbo Boost Technology 2.0 - Package

Power specification is defined for the entire package

- Monolithic die power budget shared by CPU and PG
- Sum of component power at or below specifications
- Energy budget spit dynamically according to user preference
 - Control algorithm translates energy headroom to turbo bins

Turbo in action – measurements

- Four core 45W 2.2 up to 3.5 GHz Sandy Bridge example
- **Running CPU and PG simultaneous workloads**

PL1

PL1

eap ahead

• Control power management knobs on the fly using a control utility

Energy Efficient P-State - optimizing MIPS / Watt

□ Frequency voltage scaling up is not energy efficient

- Cubic increase in power for linear increase in frequency and performance
- Used to get raw performance at the cost of increased energy consumption

Not all workloads gain performance from frequency

- For example many memory accesses \rightarrow poor performance scalability
- "Wait slowly" \rightarrow lower frequency at memory bound intervals
 - Save energy to be used for core bounded phases
 - Or just save energy with minimal performance impact

Continuously generate "scalability" metric

• Drop frequency if scalability is low

□User preference control

- Max performance ignore energy cost
- Balanced lower frequency at memory-bound intervals
- Max energy savings limited turbo

Impacts active energy - Small impact on battery life

Average Power Management

Sandy Bridge average power control

Improved C-state Latency and energy efficiency

"Interrupt storms" seen on real systems

- Performance Impact
 - Entry and exit latency
- Energy Impact
 - transition power and energy overhead

45-200mW power savings measured on Sysmark and media applications

Thermal management

Package thermal management

eap ahead

- On die thermal sensors
 - 12 sensors on each CPU core + PG, ring and SA
 - Operating range 50-100'C
- **Temperature reporting**
 - Maximum reading of each functional block and maximum reading of the total chip

Used for:

- **Critical thermal protection**
 - Notification, throttle and shutdown
 - Programmable throttle temperature
- □ Leakage calculation of power meter
- PCU optimization algorithms
- **External system controls (e.g. Fan control)**

System thermal management

Digital DDR power meter for thermal prediction

- Count DDR read and write and calculate power
- Maximum bandwidth control to prevent critical heating
- Initiates double DDR refresh rate at high temperature
- Supports DDR thermal sensor
 - For a more accurate DDR temperature reading
- Voltage Regulator thermal sensing
 - Hot and critical conditions using in and out of band communication
- Digital package temperature reporting
 - Used by external agent for system fan control

Power efficient memory controller

DDR power management

- Aggressive DDR power savings policies, configurable by PCU
 - Normal power down
 - Pre-charge Power down
 - PLL off

Self Refresh

 Configurable policies for entering Self Refresh, based on package power states, controlled by PCU

IO clock controls – power down

Platform power management

Platform power management - SVID

- **SVID Serial Voltage ID**
 - New serial bus to control external Voltage Regulators
 - □ Three wires serial bus control multiple VRs
 - Control VR voltage continues fine grain optimization
 - Optimize voltage for changing conditions
- **Optimize VR power savings mode minimize power losses**
 - Power States to optimize VR efficiency
 - A function of current consumption and sleep states
- Read VR parameters for PCU algorithms use
 - □ Load line resistance, max lcc and temperature

Platform power management – PECI

- PECI A new platform control interface
 - Connects the PCU to external embedded controller
 - Report PCU communicates out to the embedded controller:
 - Individual component and max package temperature
 - Individual and total package energy consumption
 - Other power management status information
 - Used for fan control and plat
 - **Control**:
 - Package power instantaneous and sustain (PL1-PL2)
 - Other power management settings and preferences
 - Used by Embedded Controller to manage total system power management

Summary and conclusions

Sandy Bridge is built to maximize user experience under constraints

- □ Throughput performance Turbo over long time window
- Responsiveness Turbo dynamically for short duration
- User guided CPU / PG performance balancing
- □ Battery life / Energy bills Tight control of active and idle power states
- Rich set of control available for S/W, operating system and system embedded controller allow:
 - User preferences where tradeoff exists
 - Enables small form factor platforms
 - Improved ergonomics lower acoustic noise and heat

Turbo roadmap evolution

Mahila	Merom/Penryn (Mobile only)	Nehalem//Westmere		
Desktop		Clarksfield Lynnfield/Clarkdale	Arrandale	Sandy Bridge
Control	 CPU Core C-state Digital power meter 	• CPU Core C-states • CPU Power - Platform iMon	 CPU Core C-states CPU Power- Platform iMon PG Power- Platform iMon Package Power 	 CPU Core C-states CPU/ PG/ Package power Built-in power monitoring Power Budget Management Platform Control (EC / VR)
Key New Capabilities	• 1-2 turbo bin when other core is asleep	 Turbo controlled within power limit Multi-core turbo More turbo if cores are asleep 	 PG dynamic frequency Driver controlled power sharing between CPU and PG (Mobile) 	 HW controlled power sharing between CPU - PG Brief turbo above TDP → dynamic Turbo More platform control via PECI 3.0 and SVID
Turbo Behavior Illustrative only. Does not represent actual number of turbo bins.	0 1	Quad Core Die Single Core Turbo Quad Core Turbo Turbo Core Turbo Image: Core Turbo Image: Core Turbo Image: Core Turbo <thi< th=""><th>Dual Core Die Single Core Die Core Turbo Dual Core Die Core Turbo O 1 GT Dual Core Die Core Turbo Core Turbo Core Turbo</th><th>Dual Core Die P P P</th></thi<>	Dual Core Die Single Core Die Core Turbo Dual Core Die Core Turbo O 1 GT Dual Core Die Core Turbo Core Turbo Core Turbo	Dual Core Die P P P

