
One Billion Packet per Second

Frame Processing Pipeline

Mike Davies

Director of IC Development

Fulcrum Microsystems

1

Fulcrum Ethernet Switch Chip Evolution

2

Tahoe Bali Alta

• 96 serdes

• Up to 24 10G ports

• 200nS latency

• 1MB shared memory

• L2 forwarding

• 96 serdes

• Up to 24 10G ports

• 300nS latency

• 2MB shared memory

• L3 routing and ACLs at
360 Mpps

• DCB features

• 96 serdes

• Up to 72 10G ports, 40G

• 400nS latency

• 8MB shared memory

• L3 tunneling and ACLs
at 1080 Mpps

• DCB features

• Trill and virtualization

TSMC 130nm TSMC 130nm TSMC 65nm GP

Fulcrum’s Secret Sauce

• Quasi Delay Insensitive (QDI) Asynchronous Design
- Pioneered at Caltech during 1990s

- Commercialized and further developed by Fulcrum

- 30+ Patents on technology, methodology, circuits

- 100 man-years invested in flow development to date

- Employed in every Fulcrum chip product to date

• Advantages
- High throughput (1.1-1.25 GHz in TSMC 65nm GP)

- Low latency (domino logic, 100ps per pipeline stage)

- Power efficient

- Robust to manufacturing and operational variability

- Very well suited for crossbar, TCAM, SRAM circuits

• Disadvantages
- Not area efficient for frequencies lower than 1 GHz

- Custom flow, unproductive for random logic functions

3

Self-Timed Domino Logic Pipelining

• Data Completion Detection provides immunity to delay variation

• >2x Latency advantage over static logic, flop-based pipelines

• Addresses power inefficiency with clockless handshakes
- Circuit activity driven exclusively by useful data processing

- Glitch-free

• Leverages more efficient NFET transistors
- Better for performance , area, power

Output
Completion
Detection

Dual-Rail
Domino
Logic

Control

Dual-Rail
Domino
Logic

Control

Dual-Rail
Domino
Logic

Control

Input
Completion

Detection

Stage A Stage B Stage C

4

Previous Generation Architecture

5

RapidArray
TM

- Switch Element Data Path

Frame Processing Pipeline

Statistics
Frame

Handler

RX Port Logic

SerDes PCS MAC

TX Port Logic

SerDesPCSMAC

RX Port Logic

SerDes PCS MAC

Shared
Memory

C

ro
ss

b
ar

LCI

TX Port Logic

SerDesPCSMAC

Management

C
ro

ss
b

ar

Async Logic

Sync Logic

Scheduler

Chip-level architecture remains the same in Alta

Synchronous

Frame Processing

Pipeline
~10M gates, 80% of

Bali development

effort

Frame Processing Wish List

6

• Layer 2 Switching • RMON/SMON

Tahoe (Gen 1) Requirements

• Multi-Stage ACLs

• Trill/R-Bridge

• MPLS

• Q-in-Q

• SPB, PBB, PBT (MAC-in-MAC)

• 802.1ad Provider Bridging

• Data Center Bridging

• Preamble Tagging

• sFlow

• Advanced Frame Hashing for Load

Balancing

• Pseudo-Random Load Balancing

Alta (Gen 3) Requirements

Bali (Gen 2) Requirements

• 802.1Qbb Priority Flow Control

• 802.1Qau Congestion Notification, VCN

• ISL Tagging

• IPv4, IPv6 Routing

• IP Multicast

• 5-tuple ACLs

Alta Implementation Challenge

Architectural Innovations Required
- Requirements demanded 3x performance increase

- Process provided 50% frequency increase (750 MHz to 1.1 GHz)

720G Switch/Scheduler (RapidArray)
- 67ns scheduling period over 1000 queues

- Up to 150 MHz per-queue event rate (40G)

- Challenging loop latency requirements

- Heavy use of dual-ported memories

- Very challenging asynchronous design problem,

but effectively evolutionary from previous generation

Frame Processing Pipeline
- Initial plan: Dual synchronous pipelines at 550 MHz with RTL reuse

- Final solution required technology & architectural innovation to

manage performance and functional complexity:

1) Asynchronous Place-and-Route

2) Functional programmability at a fundamental level

7

X X

Scheduler

Innovation 1: Async Place-and-Route

“Proteus” flow developed for the job
- 1 GHz Asynchronous Synthesis/P&R flow

- Leverages RTL Compiler for logic synthesis

- Leverages SOC Encounter for P&R

Challenges:
- Implicit pipelining in source async HDL

- Unusual cell library:

Dual-rail domino logic cells (30%)

Handshake Control cells (70%)

- Cyclic timing constraints

- Maintaining “slack-matching” during

buffer insertion

8

Async HDL
(CSP)

Translated
Image RTL

Image Clock

P&R
(Async Cell Library)

Alta is the first chip to utilize gigahertz

asynchronous place-and-route circuitry

Innovation 2: CAM/RAM/MUX Architecture

Observations:
- Common theme in switch silicon’s frame processing computations:

• Pattern matching

• Simple guarded assignments

• Muxing

• Mapping tables

- Bounded iterative data dependencies from ingress to egress

- Bounded aggregate information transfer from ingress to egress

Suggested a streamlined frame processor architecture
- Bottom-up simplification:

Implement the abstract computations, not hard-coded details

- TCAMs: Excellent for implementing pattern matching & DNF logic

- Crossbars: Excellent for assigning operands and muxing

- SRAMs: Needed for mapping tables and TCAM command mapping

9

Circuit primitives are all strengths of the async design style

TCAM/RAM/MUX Decomposition (1)

10

IF (ValidRoute==1 ∧ Mcast==0 ∧ (EtherType==IPv4 ∨ EtherType==IPv6))
Look up & Reassign DMAC based on matching IP route

ELSE
Leave DMAC as-is

IF (X1[0]==1 ∧ X1[4]==0 ∧ X3[15:0]==IPv4)
cmd = C 1

ELSE IF (X1[0]==1 ∧ X1[4]==0 ∧ X3[15:0]==IPv6)
cmd = C 1

ELSE
cmd = C m

Y = Action(cmd)

IF ((X1 & 0x11)==1 ∧ (X3 & 0xFF)==0x8000)
case = 1

ELSE IF ((X1 & 0x11)==1 ∧ (X3 & 0xFF)==0x86DD)
case = 2

ELSE
case = N

Cmd = ActionTable[case]
Y = Action(cmd)

Suitable for Ternary CAM

implementation

Sample hard-coded

processing rules

Reduction to generic

header variables

assigned at an

earlier stage.

DNF guard encoding

Strict priority

encoding case per

disjunctive term.

Command mapped

per case.

TCAM/RAM/MUX Decomposition (2)

11

IF (g 1(X 1,X 2,…))
case = 1

ELSE IF (g 2(X 1,X 2,…))
case = 2

…
ELSE

case = N

cmd := ActionTable[case]

Hardware realization

Standard TCAM/RAM structure
RAM maps a transformation

command, i.e. a set of “actions”, to

apply to the frame’s header fields at

that point in the pipeline

Fully General TCAM/RAM/MUX Stage

12

TCAM

Action SRAM

X

Action
Logic

TCAM Keys

Action Operands

Header Field Bus

e.g. Table Lookup, Hash Function –

dependent on the type of stage

Fixed-function Action Logic

Output Muxing
Sparsely connected

crossbar with masked

assignment

Action RAM
Maps winning TCAM

rule number to

transformation control

TCAM
Determines the

transfomation rule that

matches the frame

Subset of header fields

Subset of header fields

95 to 125 bytes

Pipelined Loop Unrolling

- Scope of configurable operation increases

exponentially with each stage

- TCAM keys, TCAM/RAM sizes, and Action

functions may differ per stage in the

pipeline

13

TCAM

RAM

XA

TCAM

RAM

XA

TCAM

RAM

XA

TCAM

RAM

XA

TCAM

RAM

XA

TCAM

RAM

XA

FOR i =1…N {
IF (g i,1 (X 1,X 2,…))

X = f i,1 (X 1,X 2,…)
ELSE IF (g i,2 (X 1,X 2,…))

X = f i,2 (X 1,X 2,…)
…

}

Repeating stages provides

iterative, fully-pipelined header

transformations

Example: Configurable Parsing

14

TCAM

Action RAM

X

SET

+

OP

Next header word from frame

Output Fields Muxing
Each half-word from the header may

be assigned to any of 44 16b fields in

the output bus, with an optional bit

roll applied

Checksum
Header fields may be

added to propagated

header checksum

Flags bus assignment
Any of 40 flags bits may be set to

propagate frame properties

downstream to later stages (e.g.

“frame is IPv4”)

State Transformation
Parsing state may be

transformed by a

specified operation.

Maintains byte offset

counts, current

header type, etc.

STATE

FLAGS

FIELDS

SUM

IF (STATE[Header]== L2 &
STATE[Offset]==12 &
HdrWord[1] ==TYPE_IPv4)

STATE[Header] = IPv4
STATE[Offset] = 2
FLAGS[IsIPv4] = 1
FIELDS[L2TYPE] = HdrWord[1]

ELSE IF (…)
…

HdrWord

Example parsing rule

Each stage receives a

successive 32b header

word from the frame

Configurable Parsing Pipeline

15

Successive header

words
Delayed in time as the

packet arrives; 3.2 ns per

word arrival rate (for 10G)

Implements a loop-unrolled, fully pipelined parsing state machine

(fixed max parsing depth of 128B)

FlexPipe™ Packet Processing Pipeline

Repeating the theme produces a highly configurable pipeline…

16

Table Lookup Action Stages

Fixed-Function Action Stages

CAM/RAM Programmable Stages

Stats ARL3 Hash

P
A
R
S
E
R

N
E
X
T
H
O
P

F
F
U

L
2
L
O
O
K
U
P

G
L
O
R
T

L
2
F

M
C
A
S
T

M
A
P
P
E
R

L
3
A
R

A
L
U

L
2
A
R

M
O
D
I
F
Y

P
O
L
I
C
E
R

C
M

L2/L3 Hash

Counter

BanksUnrolled pipeline of heterogeneous

CAM/RAM/MUX stages supports a

superset of many possible frame

processing profiles

FlexPipe™ Packet Processing Pipeline (2)

17

Different sections of the pipeline are tailored for different functions, and support different fixed-

function actions.

Table Lookup Action Stages

Fixed-Function Action Stages

CAM/RAM Programmable Stages
Stages optimized for matching and classification with

simple, mux-style actions (emphasis on TCAM)

PARSER, FFU,

L3AR, L2AR

Stages optimized for directly mapping previously assigned

fields to new fields (emphasis on large RAM)

NEXTHOP, L2F,

MCAST

Stages optimized for applying specific fixed-function actions

(emphasis on Action logic)

ALU, POLICERS,

COUNTERS

Pipeline as a whole is heterogeneous

Pipeline structure determined by typical frame processing profiles:

Parse raw frame header to extract fields of interest PARSER

Classify extracted fields and match against specific address fields MAPPER, FFU

Lookup a “next hop” destination (either for routing or tunneling) NEXTHOP

Interpret aggregate output from prior stages, assign post-route L2 fields L3AR

Perform destination and source address lookups (e.g. DMAC/SMAC) L2_LOOKUP

Map results of prior lookups to an internal switch destination port mask GLORT

Filter destination port mask based on classified frame properties (e.g. VLAN IDs) L2F

Interpret once again the aggregate output from prior stages, finalize forwarding L2AR

Transform frame header on egress based on earlier classification & mappings MODIFY

CAM Slice 13 CAM Slice 24 BST Slice 1 BST Slice 4CAM Slice 1 CAM Slice 12 Remap

Example: Filtering/Forwarding Unit (FFU)

CAM

(1k)

Action

RAM

Action

Cascade

Keys

Actions

Keys

Generic Pattern Match LPM & Exact match

Output of first 12 slices

available as keys to second set.

2nd order iterative matching.

CAM and Binary Search Tree (BST) Stages for Efficient Header Matching

Build up an instruction of actions

for future processing, up to one

action per stage in a single pass

18

CAM

(1k)

Action

RAM

Action

Cascade

CAM

(1k)

Action

RAM

Action

Cascade

CAM

(1k)

Action

RAM

Action

Cascade

SRAM

Search

(16k)

Action

RAM

Action

Cascade

SRAM

Search

(16k)

Action

RAM

Action

Cascade

Applications: ACLs, DIP/SIP matching for routing, DMAC/SMAC matching, etc.

BST table delivers 10x less power and area per bit

searched vs. TCAM. Combined, TCAM and BST

efficiently offer a large search space (88k rules).

Example Fixed-Function Action Stages

• Binary Search Tree (64K entries)
- Associative match for keys 32b to

128b wide

- Keys are configurably generated

from header/derived fields

• Hash Table (64K entries)
- 60B key for MAC Address Lookups

- Supports dual lookups & HW

learning

• ALUs (6 x 16b)
- Comparisons between header fields

and/or derived fields

- Table index computation

- Checksum adjustment

• Hash Functions (3)
- Configurable keys up to 74B of

header/derived fields

- Random mode for load balancing

• Range Compares
- Binning (e.g. TCP port ranges, frame

lgnths)

• Policers/Counters (3 banks)
- Token bucket rate limiting (for Tri-

Color marking)

- Generic byte/frame counting

• Statistics Counters (16+ banks)
- 32K(+) x 64b total counters

- 144-way counter parallelism shared

between ingress & egress frames

• Egress Frame Modification
- Per-port Byte Serial Modification

Engine

- 1.25 GHz

- Command & Operand stream

generated by CAM/RAM/MUX

stages

- Supports 20 command & 56 operand

bytes

- Supported commands (vectorized):

Insert byte, Delete byte, Overwrite

byte, Skip, Decrement, Overwrite

Checksum

19

Forwarding & Tunneling Resources

20

L
2
L
O
O
K
U
P

P
A
R
S
E
R

M
A
P
P
E
R

L3 Hash

N
E
X
T
H
O
P

F
F
U

L
3
A
R

M
C
A
S
T

M
O
D
I
F
Y

G
L
O
R
T

L
2
F

L
2
A
R

L2/L3 Hash

Parser/Mapper

Extracts fields, maps

them for downstream

FFU classification

Can flag special frames

for

mirroring, trapping, log

ging, etc.

FFU/BST Action RAMs

24K TCAM entries for NextHop index or tunnel ID

64K LPM entries for NextHop index or tunnel ID

Tunnel ID can be 12-bit pointer to egress table

Routing rules and ACL rules share TCAM/LPM

resources

NextHop Table

64K entries can hold DMAC-

VLAN for routing

32K Cascaded entries can hold

up to 4 MPLS labels or 2 with

routing

(MAC,VLAN) table

64K 36-bit entries

matched to (DMAC,VLAN)

Provides DGlort and

Tunnel ID

GLORT CAM/RAM (4K-32K)

Maps Destination Port Mask

Key sources:

• Ingress ISL tag (from Parser)

• FFU/BST action RAM

• NextHop Lookup result

• (MAC,VLAN) Lookup result

L2F DMASK Tables

8x4K + 4x256 entries

Filters or Maps DMASK

by selected index

Example index sources:

• VLAN IDs

• Hash Value, ALU result

MCAST and Egress Modify Tables

4 x 4K 16-bit tables (can hold 4K L3

MCAST VLANs or 4K x 2 labels)

Additional tables for VLAN, QoS

updates

(ECMP) (LAG)

FlexPipe™ Capabilities

• 12 Stages of Iterative Header Processing
- 12 degrees of match/map separation between ingress & egress header

fields

• TCAM Lookup Resources
- 16 architecturally distinct TCAM stages, 175 instances

- 24K rules in FFU stage optimized for Routing/ACL use

• Table Lookup Resources
- 40 architecturally distinct table lookups, 300+ instances

- 64K Next Hop Routing Entries, 64K MAC Entries

- 33K Forwarding Port Masks, 32K Egress Multicast Entries

• Extensive Parsing/Modification Flexibility
- 128B parsing depth, 88B field extraction bandwidth

- 56B of header can be added/replaced on egress, 160B deleted

• Configurability supports a microcode programmable usage

model

21

Fully Provisioned for 1.1 Billion PPS Processing

Frame Processing Wish List (Revisited)

22

• FCoE, Fibre Channel Forwarder

• Native Fibre Channel parsing

• IP-in-IP

• IP Translation (v4-to-v6, v6-to-v4)

• GRE

• Network Address Translation

• VEPA, VEPA+

• VN-Tag

• Edge Virtual Bridging

• VPWS, VPLS

• OpenFlow v0.9, v1.0, v1.1, …

• LISP (Locator/ID Separation Protocol)

Bonus Features

Features determined to be supported

by Alta after specification

closure, thanks to pipeline

configurability

Implementation Challenges

• A large, complex chip – despite simplifications
- 1.2B transistors

- Chip-wide logic area breakdown:

10% Synchronous, 13% Proteus, 31% Crossbar, 46% Custom Flow

• Small development team
- 30 engineers

- Increased head count to 40 with new hires, interns, and contractors

- Software/Systems team tasked to help with verification, chip

assembly, and low-speed RTL design

• Proteus flow challenges
- Typical case of just-in-time design flow innovation

- Limited block capacity required more manual design decomposition

- Large and/or high-latency results required selective custom redesign

• Result: Area and Schedule expansion

23

Alta Chip Plot

• Status: In Fab
Samples Q3 ‘11

• 72x10G / 18x40G

• 1W per KR port

(72W max power)

• 15 MB total memory

• 400 ns latency

• Microcode

Programmable

Ethernet Switch

24

PARSER

FFU

	Slide Number 1
	Fulcrum Ethernet Switch Chip Evolution
	Fulcrum’s Secret Sauce
	Self-Timed Domino Logic Pipelining
	Previous Generation Architecture
	Frame Processing Wish List
	Alta Implementation Challenge
	Innovation 1: Async Place-and-Route
	Innovation 2: CAM/RAM/MUX Architecture
	TCAM/RAM/MUX Decomposition (1)
	TCAM/RAM/MUX Decomposition (2)
	Fully General TCAM/RAM/MUX Stage
	Pipelined Loop Unrolling
	Example: Configurable Parsing
	Configurable Parsing Pipeline
	Slide Number 16
	FlexPipe™ Packet Processing Pipeline (2)
	Example: Filtering/Forwarding Unit (FFU)
	Example Fixed-Function Action Stages
	Slide Number 20
	FlexPipe™ Capabilities
	Frame Processing Wish List (Revisited)
	Implementation Challenges
	Alta Chip Plot

