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Why avoid communication? (1/2)

Algorithms have two costs (measured in time or energy):

1. Arithmetic (FLOPS)

2. Communication: moving data between 

– levels of a memory hierarchy (sequential case) 

– processors over a network (parallel case). 
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Why avoid communication? (2/2)
• Running time of an algorithm is sum of 3 terms:

– # flops * time_per_flop

– # words moved / bandwidth

– # messages * latency
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communication

• Time_per_flop <<  1/ bandwidth  <<  latency

• Gaps growing exponentially with time [FOSC]

• Goal : reorganize algorithms to avoid communication

• Between all memory hierarchy levels 

• L1         L2         DRAM          network,  etc 

• Very large speedups possible

• Energy savings too!

Annual improvements

Time_per_flop Bandwidth Latency

Network 26% 15%

DRAM 23% 5%
59%



“New Algorithm Improves Performance and Accuracy on Extreme-Scale 

Computing Systems. On modern computer architectures, communication 

between processors takes longer than the performance of a floating 

point arithmetic operation by a given processor. ASCR researchers have 

developed a new method, derived from commonly used linear algebra 

methods, to minimize communications between processors and the 

memory hierarchy, by reformulating the communication patterns 

specified within the algorithm. This method has been implemented in the 

TRILINOS framework, a highly-regarded suite of software, which provides 

functionality for researchers around the world to solve large scale, 

complex multi-physics problems.”

FY 2010 Congressional Budget, Volume 4, FY2010 Accomplishments, Advanced Scientific Computing 

Research (ASCR), pages 65-67.

President Obama cites Communication-Avoiding Algorithms in 

the FY 2012 Department of Energy Budget Request to Congress:

CA-GMRES (Hoemmen, Mohiyuddin, Yelick, JD)

“Tall-Skinny” QR (Grigori, Hoemmen, Langou,  JD)



Outline

• “Direct” Linear Algebra

• Lower bounds on communication for linear algebra 
problems like Ax=b, least squares, Ax = λx, SVD, etc

• New algorithms that attain these lower bounds

• Not in libraries like Sca/LAPACK (yet!)

• Large speed-ups possible

• Implications for architectural scaling

• How flop rate, bandwidths, latencies, memory 
sizes need to scale to maintain balance

• Ditto for “Iterative” Linear Algebra 



Lower bound for all “direct” linear algebra

• Holds for

– Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, …

– Some whole programs (sequences of  these operations, 
no matter how individual ops are interleaved, eg Ak)

– Dense and sparse matrices (where #flops  <<  n3 )

– Sequential and parallel algorithms

– Some graph-theoretic algorithms (eg Floyd-Warshall)
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• Let M = “fast” memory size (per processor)

#words_moved (per processor) = Ω(#flops (per processor) / M1/2 )

#messages_sent (per processor) = Ω(#flops (per processor) / M3/2 )

• Parallel case: assume either load or memory balanced
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• Let M = “fast” memory size (per processor)

#words_moved (per processor) = Ω(#flops (per processor) / M1/2 )

#messages_sent ≥  #words_moved / largest_message_size

• Parallel case: assume either load or memory balanced
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• Let M = “fast” memory size (per processor)
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Can we attain these lower bounds?

• Do conventional dense algorithms as implemented 
in  LAPACK and ScaLAPACK attain these bounds?

– Mostly not 

• If not, are there other algorithms that do?

– Yes, for much of dense linear algebra

– New algorithms, with new numerical properties,               
new ways to encode answers,  new data structures                    

– Not just loop transformations

• Only a few sparse algorithms so far

• Lots of work in progress…10



TSQR: QR of a Tall, Skinny matrix
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TSQR: QR of a Tall, Skinny matrix
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TSQR: An Architecture-Dependent Algorithm
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Dual Core:
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TSQR Performance Results
• Parallel

– Intel Clovertown

– Up to 8x speedup (8 core, dual socket, 10M x 10)

– Pentium III cluster, Dolphin Interconnect, MPICH

• Up to 6.7x speedup (16 procs, 100K x 200)

– BlueGene/L

• Up to 4x speedup (32 procs, 1M x 50)

– Tesla C 2050 / Fermi

• Up to 13x (110,592 x 100)

– Grid – 4x on 4 cities (Dongarra et al)

– Cloud – early result – up and running

• Sequential  

– “Infinite speedup” for out-of-Core on PowerPC laptop

• As little as 2x slowdown vs (predicted) infinite DRAM

• LAPACK with virtual memory never finished
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Exascale Machine Parameters

Source: DOE Exascale Workshop

• 2^20 ≈ 1,000,000 nodes

• 1024 cores/node   (a billion cores!)

• 100 GB/sec interconnect bandwidth

• 400 GB/sec DRAM bandwidth

• 1 microsec interconnect latency

• 50 nanosec memory latency

• 32 Petabytes of memory

• 1/2 GB total L1 on a node

• 20 Megawatts !?



Exascale predicted speedups

for Gaussian Elimination:  

CA-LU vs ScaLAPACK-LU 
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Are we using all the hardware resources?

• Assume nxn dense matrices on P processors

• Usual approach

• 1 copy of data ⇒ Memory per processor = M ≈ n2 / P

• Recall lower bounds:

#words_moved =   Ω( (n3/ P)  / M1/2 )  =  Ω( n2 /  P1/2 )      

#messages =   Ω( (n3/ P)  / M3/2 )  =  Ω( P1/2 )

• Attained by 2D algorithms  (many examples)

• P processors connected in P1/2 x  P1/2 mesh

• Each processor owns, computes on a square submatrix

• New approach

• Use all available memory 

• c>1 copies of data ⇒ Memory per processor = M ≈ c n2 / P

• Lower bounds get smaller

• New 2.5D algorithms can attain new lower bounds

• P processors in (P/c)1/2 x (P/c)1/2 x  c   mesh



2.5D Matmul versus ScaLAPACK
• 2D     algorithms use P1/2 x   P1/2 mesh  and  minimal memory

• 2.5D algorithms use (P/c)1/2 x (P/c)1/2 x c1/2 mesh  and c-fold memory

• Matmul sends c1/2 times fewer words – lower bound

• Matmul sends c3/2 times fewer messages – lower bound

Perfect

Strong Scaling

Critical to use all 

links of BG/P’s 

3D torus 

interconnect



Timing Breakdown for

2D vs 2.5D Gaussian Elimination:

How much communication can we avoid?

No pivoting

Pivoting

Distinguished Paper Award, EuroPar’11

Communication 

Reduced 86%



Implications for Architectural Scaling

• Machine parameters:

– γ = seconds per flop (multiply or add)

– β = reciprocal bandwidth (in seconds)

– α = latency (in seconds)

– M = local (fast) memory size

– P = number of processors

• Goal: relationships among these parameters 
that guarantees that communication is not the 
bottleneck for direct linear algebra



Implications for Architectural Scaling

Sequential Case:

• Requirements so that “most” time is spent doing 

arithmetic on n x n dense matrices, n2 > M

– γ M1/2 > ≈ β
• In other words, time to add two rows of largest locally 

storable square matrix exceeds reciprocal bandwidth

– γ M3/2 > ≈ α
• In other words, time to multiply 2 largest locally storable 

square matrices exceeds latency

• Applies to every level of memory hierarchy

γ M > ≈ α for old algorithms

γ M1/3 > ≈ β for old algorithms

Stricter requirements on architecture for old algorithms



Implications for Architectural Scaling

Parallel Case:

• Requirements so that “most” time is spent doing 

arithmetic on n x n dense matrices

– γ (n/p1/2) > ≈ β
• In other words, time to add two rows of locally stored 

square matrix exceeds reciprocal bandwidth

– γ (n/p1/2)3 > ≈ α
• In other words, time to multiply 2 locally stored square 

matrices exceeds latency

γ (n/p1/2)2 > ≈ α γ M3/2 > ≈ α

γ M1/2 > ≈ β

Stricter requirements on architecture for old algorithms

Looser requirements on architecture for 2.5D algorithms



Summary of Direct Linear Algebra

• New lower bounds, optimal algorithms, big 
speedups in theory and practice

• Lots of other progress, open problems

– Heterogeneous architectures

• Extends to case where each processor and link has a different 
speed (SPAA’11)

– More dense and sparse algorithms done, underway

– Extensions to  Strassen-like algorithms

• Best Paper Award, SPAA’11

– Need Autotuning



Avoiding Communication in Iterative Linear Algebra

• k-steps of iterative solver for sparse Ax=b or Ax=λx

– Does k SpMVs with A and starting vector

– Many such “Krylov Subspace Methods”

• Goal: minimize communication

– Assume matrix “well-partitioned”

– Serial implementation

• Conventional: O(k) moves of data from slow to fast memory

• New: O(1) moves of data – optimal

– Parallel implementation on p processors

• Conventional: O(k log p) messages  (k SpMV calls, dot prods)

• New: O(log p) messages - optimal

• Lots of speed up possible (modeled and measured)

– Price: some redundant computation
24



Minimizing Communication of GMRES to solve Ax=b

• GMRES: find x in span{b,Ab,…,Akb} minimizing || Ax-b ||2

Standard GMRES

for i=1 to k

w = A · v(i-1)   … SpMV

MGS(w, v(0),…,v(i-1))

update v(i), H

endfor

solve LSQ problem with H

Communication-avoiding GMRES

W = [ v, Av, A2v, … , A
k

v ]

[Q,R] = TSQR(W)  

…  “Tall Skinny QR”

build H from R 

solve LSQ problem with H

•Oops – W from power method, precision lost!
25

Sequential case: #words moved decreases by a factor of k

Parallel case: #messages decreases by a factor of k



“Monomial” basis [Ax,…,Akx]  

fails to converge

Different polynomial basis [p1(A)x,…,pk(A)x]

does converge
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Speed ups of GMRES on 8-core Intel Clovertown

[MHDY09]
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Requires Co-tuning Kernels



Exascale predicted speedups for 

Matrix Powers Kernel over SpMV

for 2D Poisson (5 point stencil)
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Summary of Iterative Linear Algebra

• New Lower bounds, optimal algorithms,                  
big speedups in theory and practice

• Lots of other progress, open problems

– Many different algorithms reorganized 

• More underway

– Architectural scaling rules (as for direct case)

• Sparse matrices ⇒ stricter conditions for scaling

– Need to recognize stable variants more easily

– Need Autotuning



For further information

• www.cs.berkeley.edu/~demmel

• Papers

– bebop.cs.berkeley.edu

– www.netlib.org/lapack/lawns

• 1-week-short course – slides and video

– www.ba.cnr.it/ISSNLA2010

• Google “parallel computing course”

http://www.ba.cnr.it/ISSNLA2010�


Summary

Don’t Communic…
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Time to redesign all linear algebra  

algorithms and software

And eventually the rest of applied mathematics



EXTRA SLIDES
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x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx] 

• Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx] 

• Example: A tridiagonal, n=32, k=3

• Works for any “well-partitioned” A
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Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx] 

• Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]

• Sequential Algorithm

• Example: A tridiagonal, n=32, k=3

Step 1
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Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx] 

• Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]

• Parallel Algorithm

• Example: A tridiagonal, n=32, k=3

• Each processor communicates once with neighbors 

Proc 1 Proc  2 Proc  3 Proc  4
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Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx] 

• Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]

• Parallel Algorithm

• Example: A tridiagonal, n=32, k=3

• Each processor works on (overlapping) trapezoid

Proc 1 Proc  2 Proc  3 Proc  4



Same idea works for general sparse matrices

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx] 



We’re hiring!

• Seeking a postdoc to help develop the next 

versions of LAPACK and ScaLAPACK
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7 Dwarfs of High Performance Computing (HPC)

Monte Carlo
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7 Dwarfs – Are they enough?

Monte Carlo
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13 Motifs (nee “Dwarf”) of 
Parallel Computing

Popularity:  (Red Hot / Blue Cool)

Monte Carlo
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 What happened to Monte Carlo?

Motifs in ParLab Applications 
(Red Hot / Blue Cool)



One-sided Factorizations (LU, QR)
• Classical Approach

for  i=1 to n

update column i

update trailing  matrix

• #words_moved = O(n3)
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• Blocked Approach (LAPACK)

for  i=1 to n/b

update block i of b columns

update trailing  matrix

• #words moved = O(n3/M1/3)

• Recursive Approach 

func factor(A)

if A has 1 column,  update it 

else

factor(left half of A)

update right half of A

factor(right half of A)

• #words moved = O(n3/M1/2)

• None of these approaches

minimizes #messages or 

works in parallel

• Need another idea



Communication-Avoiding LU:

Use reduction tree, to do “Tournament Pivoting”
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Wnxb =

W1

W2

W3

W4

P1·L1·U1

P2·L2·U2

P3·L3·U3

P4·L4·U4

=

Choose b pivot rows of W1, call them W1’

Ditto for W2, yielding W2’

Ditto for W3, yielding W3’

Ditto for W4, yielding W4’

W1’

W2’

W3’

W4’

P12·L12·U12

P34·L34·U34

=
Choose b pivot rows, call them W12’

Ditto, yielding W34’

W12’

W34’
=     P1234·L1234·U1234 Choose b pivot rows

• Go back to W and use these b pivot rows 

(move them to top, do LU without pivoting)



Collaborators
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Can we do even better?

• Assume nxn matrices on P processors

• Why just one copy of data: M = O(n2 / P) per processor?

• Recall lower bounds:

#words_moved =   Ω( (n3/ P)  / M1/2 )  =  Ω( n2 /  P1/2 )      

#messages =   Ω( (n3/ P)  / M3/2 )  =  Ω( P1/2 )

Algorithm Reference Factor exceeding 

lower bound for 

#words_moved

Factor exceeding 

lower bound for 

#messages

Matrix Multiply [Cannon, 69] 1 1

Cholesky ScaLAPACK log P log P

LU [GDX10] log P log P

QR [DGHL08] log P log3 P

Sym Eig, SVD [BDD11] log P log3 P

Nonsym Eig [BDD11] log P log3 P



Can we do even better?

• Assume nxn matrices on P processors

• Why just one copy of data: M = O(n2 / P) per processor?

• Increase M to reduce lower bounds:

#words_moved =   Ω( (n3/ P)  / M1/2 )  =  Ω( n2 /  P1/2 )      

#messages =   Ω( (n3/ P)  / M3/2 )  =  Ω( P1/2 )

Algorithm Reference Factor exceeding 

lower bound for 

#words_moved

Factor exceeding 

lower bound for 

#messages

Matrix Multiply [Cannon, 69] 1 1

Cholesky ScaLAPACK log P log P

LU [GDX10] log P log P

QR [DGHL08] log P log3 P

Sym Eig, SVD [BDD11] log P log3 P

Nonsym Eig [BDD11] log P log3 P



Beating   #words_moved =  Ω(n2/P1/2) 
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• “3D” Matmul Algorithm on P1/3 x P1/3 x P1/3 processor grid

• P1/3 redundant copies of A and B

• Reduces communication volume to  O( (n2/P2/3)  log(P) ) 

• optimal for P1/3 copies  (more memory can’t help)

• Reduces number of messages to  O(log(P)) – also optimal

• “2.5D” Algorithms

• Extends to 1 ≤ c ≤ P1/3 copies on (P/c)1/2 x (P/c)1/2 x  c grid

• Reduces communication volume of Matmul and LU by c1/2

• Reduces comm 83% on 64K proc BG-P,   LU&MM speedup 2.6x

• Distinguished Paper Prize, Euro-Par’11 (E. Solomonik, JD)

• #words_moved = Ω((n3/P)/M1/2)

• If c copies of data, M = c·n2/P,  bound decreases by factor c1/2

• Can we attain it?
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Lower bound for 
Strassen’s fast matrix multiplication
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For  Strassen-like:Recall O(n3) case: For Strassen’s:

• Parallel lower bounds apply to 2D (1 copy of data)  and 2.5D (c copies) 

log2 7log2 8 ω0

Sequential:

Parallel:

• Attainable

• Sequential: usual recursive algorithms, also for LU, QR, eig, SVD,…

• Parallel: just matmul so far …

• Talk by Oded Schwartz, Thursday, 5:30pm

• Best Paper Award, SPAA’11   (Ballard, JD, Holtz, Schwartz)



Sequential Strong Scaling

Standard Alg. CA-CG with SA1 CA-CG with SA2

1D 3-pt stencil

2D 5-pt stencil

3D 7-pt stencil



Parallel Strong Scaling

Standard Alg. CA-CG with PA1

1D 3-pt stencil

2D 5-pt stencil

3D 7-pt stencil



Weak Scaling

• Change p to x*p, n to x^(1/d)*n
– d = {1, 2, 3} for 1D, 2D, and 3D mesh

• Bandwidth
– Perfect weak scaling for 1D, 2D, and 3D

• Latency
– Perfect weak scaling for 1D, 2D, and 3D if you 

ignore the log(xp) factor in the denominator
• Makes constraint on alpha harder to satisfy



Performance Model Assumptions

• Plot for Parallel Algorithm for 1D 3-pt stencil

• Exascale machine parameters:
– 100 GB/sec interconnect BW

– 1 microsecond network latency

– 2^28 cores

– .1 ns per flop (per core)





Observations

• s =1 are the constraints for the standard algorithm

– Standard algorithm is communication bound if n <~ 1012

• For 108 <~ n <~ 1012, we can theoretically increase s 
such that the algorithm is no longer communication 
bound 

– In practice, high s values have some complications due to 
stability, but even s ~ 10 can remove communication 
bottleneck for matrix sizes ~1010
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