
Rethinking Algorithms for

Future Architectures:

Communication-Avoiding Algorithms

Jim Demmel

EECS & Math Departments

UC Berkeley

Collaborators and Supporters

• Collaborators
– Katherine Yelick (UCB & LBNL) Michael Anderson (UCB), Grey Ballard

(UCB), Jong-Ho Byun (UCB), Erin Carson (UCB), Jack Dongarra (UTK),
Ioana Dumitriu (U. Wash), Laura Grigori (INRIA), Ming Gu (UCB),
Mark Hoemmen (Sandia NL), Olga Holtz (UCB & TU Berlin), Kurt
Keutzer (UCB), Nick Knight (UCB), Julien Langou, (U Colo. Denver),
Marghoob Mohiyuddin (UCB), Hong Diep Nguyen (UCB), Oded
Schwartz (TU Berlin), Edgar Solomonik (UCB), Michelle Strout (Colo.
SU), Vasily Volkov (UCB), Sam Williams (LBNL), Hua Xiang (INRIA)

– Other members of the ParLab, BEBOP, CACHE, EASI, MAGMA,
PLASMA, TOPS projects

• Supporters
– NSF, DOE, UC Discovery

– Intel, Microsoft, Mathworks, National Instruments, NEC,
Nokia, NVIDIA, Samsung, Sun

3

Why avoid communication? (1/2)

Algorithms have two costs (measured in time or energy):

1. Arithmetic (FLOPS)

2. Communication: moving data between

– levels of a memory hierarchy (sequential case)

– processors over a network (parallel case).

CPU

Cache

DRAM

CPU

DRAM

CPU

DRAM

CPU

DRAM

CPU

DRAM

Why avoid communication? (2/2)
• Running time of an algorithm is sum of 3 terms:

– # flops * time_per_flop

– # words moved / bandwidth

– # messages * latency

4

communication

• Time_per_flop << 1/ bandwidth << latency

• Gaps growing exponentially with time [FOSC]

• Goal : reorganize algorithms to avoid communication

• Between all memory hierarchy levels

• L1 L2 DRAM network, etc

• Very large speedups possible

• Energy savings too!

Annual improvements

Time_per_flop Bandwidth Latency

Network 26% 15%

DRAM 23% 5%
59%

“New Algorithm Improves Performance and Accuracy on Extreme-Scale

Computing Systems. On modern computer architectures, communication

between processors takes longer than the performance of a floating

point arithmetic operation by a given processor. ASCR researchers have

developed a new method, derived from commonly used linear algebra

methods, to minimize communications between processors and the

memory hierarchy, by reformulating the communication patterns

specified within the algorithm. This method has been implemented in the

TRILINOS framework, a highly-regarded suite of software, which provides

functionality for researchers around the world to solve large scale,

complex multi-physics problems.”

FY 2010 Congressional Budget, Volume 4, FY2010 Accomplishments, Advanced Scientific Computing

Research (ASCR), pages 65-67.

President Obama cites Communication-Avoiding Algorithms in

the FY 2012 Department of Energy Budget Request to Congress:

CA-GMRES (Hoemmen, Mohiyuddin, Yelick, JD)

“Tall-Skinny” QR (Grigori, Hoemmen, Langou, JD)

Outline

• “Direct” Linear Algebra

• Lower bounds on communication for linear algebra
problems like Ax=b, least squares, Ax = λx, SVD, etc

• New algorithms that attain these lower bounds

• Not in libraries like Sca/LAPACK (yet!)

• Large speed-ups possible

• Implications for architectural scaling

• How flop rate, bandwidths, latencies, memory
sizes need to scale to maintain balance

• Ditto for “Iterative” Linear Algebra

Lower bound for all “direct” linear algebra

• Holds for

– Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, …

– Some whole programs (sequences of these operations,
no matter how individual ops are interleaved, eg Ak)

– Dense and sparse matrices (where #flops << n3)

– Sequential and parallel algorithms

– Some graph-theoretic algorithms (eg Floyd-Warshall)
7

• Let M = “fast” memory size (per processor)

#words_moved (per processor) = Ω(#flops (per processor) / M1/2)

#messages_sent (per processor) = Ω(#flops (per processor) / M3/2)

• Parallel case: assume either load or memory balanced

Lower bound for all “direct” linear algebra

• Holds for

– Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, …

– Some whole programs (sequences of these operations,
no matter how individual ops are interleaved, eg Ak)

– Dense and sparse matrices (where #flops << n3)

– Sequential and parallel algorithms

– Some graph-theoretic algorithms (eg Floyd-Warshall)
8

• Let M = “fast” memory size (per processor)

#words_moved (per processor) = Ω(#flops (per processor) / M1/2)

#messages_sent ≥ #words_moved / largest_message_size

• Parallel case: assume either load or memory balanced

Lower bound for all “direct” linear algebra

• Holds for

– Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, …

– Some whole programs (sequences of these operations,
no matter how individual ops are interleaved, eg Ak)

– Dense and sparse matrices (where #flops << n3)

– Sequential and parallel algorithms

– Some graph-theoretic algorithms (eg Floyd-Warshall)
9

• Let M = “fast” memory size (per processor)

#words_moved (per processor) = Ω(#flops (per processor) / M1/2)

#messages_sent (per processor) = Ω(#flops (per processor) / M3/2)

• Parallel case: assume either load or memory balanced

Can we attain these lower bounds?

• Do conventional dense algorithms as implemented
in LAPACK and ScaLAPACK attain these bounds?

– Mostly not

• If not, are there other algorithms that do?

– Yes, for much of dense linear algebra

– New algorithms, with new numerical properties,
new ways to encode answers, new data structures

– Not just loop transformations

• Only a few sparse algorithms so far

• Lots of work in progress…10

TSQR: QR of a Tall, Skinny matrix

11

W =

Q00 R00

Q10 R10

Q20 R20

Q30 R30

W0

W1

W2

W3

Q00

Q10

Q20

Q30

= = .

R00

R10

R20

R30

R00

R10

R20

R30

=
Q01 R01

Q11 R11

Q01

Q11

= .
R01

R11

R01

R11

= Q02 R02

TSQR: QR of a Tall, Skinny matrix

12

W =

Q00 R00

Q10 R10

Q20 R20

Q30 R30

W0

W1

W2

W3

Q00

Q10

Q20

Q30

= = .

R00

R10

R20

R30

R00

R10

R20

R30

=
Q01 R01

Q11 R11

Q01

Q11
= .

R01

R11

R01

R11

= Q02 R02

Output = { Q00, Q10, Q20, Q30, Q01, Q11, Q02, R02 }

TSQR: An Architecture-Dependent Algorithm

W =

W0

W1

W2

W3

R00

R10

R20

R30

R01

R11

R02
Parallel:

W =

W0

W1

W2

W3

R01
R02

R00

R03

Sequential:

W =

W0

W1

W2

W3

R00

R01

R01

R11

R02

R11

R03

Dual Core:

Can choose reduction tree dynamically

Multicore / Multisocket / Multirack / Multisite / Out-of-core: ?

TSQR Performance Results
• Parallel

– Intel Clovertown

– Up to 8x speedup (8 core, dual socket, 10M x 10)

– Pentium III cluster, Dolphin Interconnect, MPICH

• Up to 6.7x speedup (16 procs, 100K x 200)

– BlueGene/L

• Up to 4x speedup (32 procs, 1M x 50)

– Tesla C 2050 / Fermi

• Up to 13x (110,592 x 100)

– Grid – 4x on 4 cities (Dongarra et al)

– Cloud – early result – up and running

• Sequential

– “Infinite speedup” for out-of-Core on PowerPC laptop

• As little as 2x slowdown vs (predicted) infinite DRAM

• LAPACK with virtual memory never finished

14

Exascale Machine Parameters

Source: DOE Exascale Workshop

• 2^20 ≈ 1,000,000 nodes

• 1024 cores/node (a billion cores!)

• 100 GB/sec interconnect bandwidth

• 400 GB/sec DRAM bandwidth

• 1 microsec interconnect latency

• 50 nanosec memory latency

• 32 Petabytes of memory

• 1/2 GB total L1 on a node

• 20 Megawatts !?

Exascale predicted speedups

for Gaussian Elimination:

CA-LU vs ScaLAPACK-LU

log2 (p)

lo
g

2
(n

2
/p

)
=

lo
g

2
(m

e
m

o
ry

_
p

e
r_

p
ro

c)

Are we using all the hardware resources?

• Assume nxn dense matrices on P processors

• Usual approach

• 1 copy of data ⇒ Memory per processor = M ≈ n2 / P

• Recall lower bounds:

#words_moved = Ω((n3/ P) / M1/2) = Ω(n2 / P1/2)

#messages = Ω((n3/ P) / M3/2) = Ω(P1/2)

• Attained by 2D algorithms (many examples)

• P processors connected in P1/2 x P1/2 mesh

• Each processor owns, computes on a square submatrix

• New approach

• Use all available memory

• c>1 copies of data ⇒ Memory per processor = M ≈ c n2 / P

• Lower bounds get smaller

• New 2.5D algorithms can attain new lower bounds

• P processors in (P/c)1/2 x (P/c)1/2 x c mesh

2.5D Matmul versus ScaLAPACK
• 2D algorithms use P1/2 x P1/2 mesh and minimal memory

• 2.5D algorithms use (P/c)1/2 x (P/c)1/2 x c1/2 mesh and c-fold memory

• Matmul sends c1/2 times fewer words – lower bound

• Matmul sends c3/2 times fewer messages – lower bound

Perfect

Strong Scaling

Critical to use all

links of BG/P’s

3D torus

interconnect

Timing Breakdown for

2D vs 2.5D Gaussian Elimination:

How much communication can we avoid?

No pivoting

Pivoting

Distinguished Paper Award, EuroPar’11

Communication

Reduced 86%

Implications for Architectural Scaling

• Machine parameters:

– γ = seconds per flop (multiply or add)

– β = reciprocal bandwidth (in seconds)

– α = latency (in seconds)

– M = local (fast) memory size

– P = number of processors

• Goal: relationships among these parameters
that guarantees that communication is not the
bottleneck for direct linear algebra

Implications for Architectural Scaling

Sequential Case:

• Requirements so that “most” time is spent doing

arithmetic on n x n dense matrices, n2 > M

– γ M1/2 > ≈ β
• In other words, time to add two rows of largest locally

storable square matrix exceeds reciprocal bandwidth

– γ M3/2 > ≈ α
• In other words, time to multiply 2 largest locally storable

square matrices exceeds latency

• Applies to every level of memory hierarchy

γ M > ≈ α for old algorithms

γ M1/3 > ≈ β for old algorithms

Stricter requirements on architecture for old algorithms

Implications for Architectural Scaling

Parallel Case:

• Requirements so that “most” time is spent doing

arithmetic on n x n dense matrices

– γ (n/p1/2) > ≈ β
• In other words, time to add two rows of locally stored

square matrix exceeds reciprocal bandwidth

– γ (n/p1/2)3 > ≈ α
• In other words, time to multiply 2 locally stored square

matrices exceeds latency

γ (n/p1/2)2 > ≈ α γ M3/2 > ≈ α

γ M1/2 > ≈ β

Stricter requirements on architecture for old algorithms

Looser requirements on architecture for 2.5D algorithms

Summary of Direct Linear Algebra

• New lower bounds, optimal algorithms, big
speedups in theory and practice

• Lots of other progress, open problems

– Heterogeneous architectures

• Extends to case where each processor and link has a different
speed (SPAA’11)

– More dense and sparse algorithms done, underway

– Extensions to Strassen-like algorithms

• Best Paper Award, SPAA’11

– Need Autotuning

Avoiding Communication in Iterative Linear Algebra

• k-steps of iterative solver for sparse Ax=b or Ax=λx

– Does k SpMVs with A and starting vector

– Many such “Krylov Subspace Methods”

• Goal: minimize communication

– Assume matrix “well-partitioned”

– Serial implementation

• Conventional: O(k) moves of data from slow to fast memory

• New: O(1) moves of data – optimal

– Parallel implementation on p processors

• Conventional: O(k log p) messages (k SpMV calls, dot prods)

• New: O(log p) messages - optimal

• Lots of speed up possible (modeled and measured)

– Price: some redundant computation
24

Minimizing Communication of GMRES to solve Ax=b

• GMRES: find x in span{b,Ab,…,Akb} minimizing || Ax-b ||2

Standard GMRES

for i=1 to k

w = A · v(i-1) … SpMV

MGS(w, v(0),…,v(i-1))

update v(i), H

endfor

solve LSQ problem with H

Communication-avoiding GMRES

W = [v, Av, A2v, … , A
k

v]

[Q,R] = TSQR(W)

… “Tall Skinny QR”

build H from R

solve LSQ problem with H

•Oops – W from power method, precision lost!
25

Sequential case: #words moved decreases by a factor of k

Parallel case: #messages decreases by a factor of k

“Monomial” basis [Ax,…,Akx]

fails to converge

Different polynomial basis [p1(A)x,…,pk(A)x]

does converge

26

Speed ups of GMRES on 8-core Intel Clovertown

[MHDY09]

27

Requires Co-tuning Kernels

Exascale predicted speedups for

Matrix Powers Kernel over SpMV

for 2D Poisson (5 point stencil)

log2 (p)

lo
g

2
(n

2
/p

)
=

lo
g

2
(m

e
m

o
ry

_
p

e
r_

p
ro

c)

Summary of Iterative Linear Algebra

• New Lower bounds, optimal algorithms,
big speedups in theory and practice

• Lots of other progress, open problems

– Many different algorithms reorganized

• More underway

– Architectural scaling rules (as for direct case)

• Sparse matrices ⇒ stricter conditions for scaling

– Need to recognize stable variants more easily

– Need Autotuning

For further information

• www.cs.berkeley.edu/~demmel

• Papers

– bebop.cs.berkeley.edu

– www.netlib.org/lapack/lawns

• 1-week-short course – slides and video

– www.ba.cnr.it/ISSNLA2010

• Google “parallel computing course”

http://www.ba.cnr.it/ISSNLA2010�

Summary

Don’t Communic…

31

Time to redesign all linear algebra

algorithms and software

And eventually the rest of applied mathematics

EXTRA SLIDES

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]

• Example: A tridiagonal, n=32, k=3

• Works for any “well-partitioned” A

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]

• Example: A tridiagonal, n=32, k=3

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]

• Example: A tridiagonal, n=32, k=3

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]

• Example: A tridiagonal, n=32, k=3

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]

• Example: A tridiagonal, n=32, k=3

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]

• Example: A tridiagonal, n=32, k=3

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]

• Sequential Algorithm

• Example: A tridiagonal, n=32, k=3

Step 1

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]

• Sequential Algorithm

• Example: A tridiagonal, n=32, k=3

Step 1 Step 2

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]

• Sequential Algorithm

• Example: A tridiagonal, n=32, k=3

Step 1 Step 2 Step 3

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]

• Sequential Algorithm

• Example: A tridiagonal, n=32, k=3

Step 1 Step 2 Step 3 Step 4

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]

• Parallel Algorithm

• Example: A tridiagonal, n=32, k=3

• Each processor communicates once with neighbors

Proc 1 Proc 2 Proc 3 Proc 4

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]

• Parallel Algorithm

• Example: A tridiagonal, n=32, k=3

• Each processor works on (overlapping) trapezoid

Proc 1 Proc 2 Proc 3 Proc 4

Same idea works for general sparse matrices

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

We’re hiring!

• Seeking a postdoc to help develop the next

versions of LAPACK and ScaLAPACK

48

7 Dwarfs of High Performance Computing (HPC)

Monte Carlo

49

7 Dwarfs – Are they enough?

Monte Carlo

50

13 Motifs (nee “Dwarf”) of
Parallel Computing

Popularity: (Red Hot / Blue Cool)

Monte Carlo

51

 What happened to Monte Carlo?

Motifs in ParLab Applications
(Red Hot / Blue Cool)

One-sided Factorizations (LU, QR)
• Classical Approach

for i=1 to n

update column i

update trailing matrix

• #words_moved = O(n3)

55

• Blocked Approach (LAPACK)

for i=1 to n/b

update block i of b columns

update trailing matrix

• #words moved = O(n3/M1/3)

• Recursive Approach

func factor(A)

if A has 1 column, update it

else

factor(left half of A)

update right half of A

factor(right half of A)

• #words moved = O(n3/M1/2)

• None of these approaches

minimizes #messages or

works in parallel

• Need another idea

Communication-Avoiding LU:

Use reduction tree, to do “Tournament Pivoting”

56

Wnxb =

W1

W2

W3

W4

P1·L1·U1

P2·L2·U2

P3·L3·U3

P4·L4·U4

=

Choose b pivot rows of W1, call them W1’

Ditto for W2, yielding W2’

Ditto for W3, yielding W3’

Ditto for W4, yielding W4’

W1’

W2’

W3’

W4’

P12·L12·U12

P34·L34·U34

=
Choose b pivot rows, call them W12’

Ditto, yielding W34’

W12’

W34’
= P1234·L1234·U1234 Choose b pivot rows

• Go back to W and use these b pivot rows

(move them to top, do LU without pivoting)

Collaborators

• Katherine Yelick, Michael Anderson, Grey

Ballard, Erin Carson, Ioana Dumitriu, Laura

Grigori, Mark Hoemmen, Olga Holtz, Kurt

Keutzer, Nicholas Knight, Julien Langou,

Marghoob Mohiyuddin, Oded Schwartz, Edgar

Solomonik, Vasily Volkok, Sam Williams, Hua

Xiang

Can we do even better?

• Assume nxn matrices on P processors

• Why just one copy of data: M = O(n2 / P) per processor?

• Recall lower bounds:

#words_moved = Ω((n3/ P) / M1/2) = Ω(n2 / P1/2)

#messages = Ω((n3/ P) / M3/2) = Ω(P1/2)

Algorithm Reference Factor exceeding

lower bound for

#words_moved

Factor exceeding

lower bound for

#messages

Matrix Multiply [Cannon, 69] 1 1

Cholesky ScaLAPACK log P log P

LU [GDX10] log P log P

QR [DGHL08] log P log3 P

Sym Eig, SVD [BDD11] log P log3 P

Nonsym Eig [BDD11] log P log3 P

Can we do even better?

• Assume nxn matrices on P processors

• Why just one copy of data: M = O(n2 / P) per processor?

• Increase M to reduce lower bounds:

#words_moved = Ω((n3/ P) / M1/2) = Ω(n2 / P1/2)

#messages = Ω((n3/ P) / M3/2) = Ω(P1/2)

Algorithm Reference Factor exceeding

lower bound for

#words_moved

Factor exceeding

lower bound for

#messages

Matrix Multiply [Cannon, 69] 1 1

Cholesky ScaLAPACK log P log P

LU [GDX10] log P log P

QR [DGHL08] log P log3 P

Sym Eig, SVD [BDD11] log P log3 P

Nonsym Eig [BDD11] log P log3 P

Beating #words_moved = Ω(n2/P1/2)

64

• “3D” Matmul Algorithm on P1/3 x P1/3 x P1/3 processor grid

• P1/3 redundant copies of A and B

• Reduces communication volume to O((n2/P2/3) log(P))

• optimal for P1/3 copies (more memory can’t help)

• Reduces number of messages to O(log(P)) – also optimal

• “2.5D” Algorithms

• Extends to 1 ≤ c ≤ P1/3 copies on (P/c)1/2 x (P/c)1/2 x c grid

• Reduces communication volume of Matmul and LU by c1/2

• Reduces comm 83% on 64K proc BG-P, LU&MM speedup 2.6x

• Distinguished Paper Prize, Euro-Par’11 (E. Solomonik, JD)

• #words_moved = Ω((n3/P)/M1/2)

• If c copies of data, M = c·n2/P, bound decreases by factor c1/2

• Can we attain it?

65

Lower bound for
Strassen’s fast matrix multiplication

Ω M
M

n
7log2

Ω M
M

n 0ω

Ω M
M

n
8log2

Ω
P

M

M

n
7log2

Ω
P

M

M

n 0ω

Ω
P

M

M

n
8log2

For Strassen-like:Recall O(n3) case: For Strassen’s:

• Parallel lower bounds apply to 2D (1 copy of data) and 2.5D (c copies)

log2 7log2 8 ω0

Sequential:

Parallel:

• Attainable

• Sequential: usual recursive algorithms, also for LU, QR, eig, SVD,…

• Parallel: just matmul so far …

• Talk by Oded Schwartz, Thursday, 5:30pm

• Best Paper Award, SPAA’11 (Ballard, JD, Holtz, Schwartz)

Sequential Strong Scaling

Standard Alg. CA-CG with SA1 CA-CG with SA2

1D 3-pt stencil

2D 5-pt stencil

3D 7-pt stencil

Parallel Strong Scaling

Standard Alg. CA-CG with PA1

1D 3-pt stencil

2D 5-pt stencil

3D 7-pt stencil

Weak Scaling

• Change p to x*p, n to x^(1/d)*n
– d = {1, 2, 3} for 1D, 2D, and 3D mesh

• Bandwidth
– Perfect weak scaling for 1D, 2D, and 3D

• Latency
– Perfect weak scaling for 1D, 2D, and 3D if you

ignore the log(xp) factor in the denominator
• Makes constraint on alpha harder to satisfy

Performance Model Assumptions

• Plot for Parallel Algorithm for 1D 3-pt stencil

• Exascale machine parameters:
– 100 GB/sec interconnect BW

– 1 microsecond network latency

– 2^28 cores

– .1 ns per flop (per core)

Observations

• s =1 are the constraints for the standard algorithm

– Standard algorithm is communication bound if n <~ 1012

• For 108 <~ n <~ 1012, we can theoretically increase s
such that the algorithm is no longer communication
bound

– In practice, high s values have some complications due to
stability, but even s ~ 10 can remove communication
bottleneck for matrix sizes ~1010

	Rethinking Algorithms for�Future Architectures:�Communication-Avoiding Algorithms
	Collaborators and Supporters
	Why avoid communication? (1/2)
	Why avoid communication? (2/2)
	Slide Number 5
	Outline
	Lower bound for all “direct” linear algebra
	Lower bound for all “direct” linear algebra
	Lower bound for all “direct” linear algebra
	Can we attain these lower bounds?
	TSQR: QR of a Tall, Skinny matrix
	TSQR: QR of a Tall, Skinny matrix
	TSQR: An Architecture-Dependent Algorithm
	TSQR Performance Results
	Exascale Machine Parameters�Source: DOE Exascale Workshop
	Exascale predicted speedups�for Gaussian Elimination: � CA-LU vs ScaLAPACK-LU
	Are we using all the hardware resources?
	Slide Number 18
	Slide Number 19
	Implications for Architectural Scaling
	Implications for Architectural Scaling�Sequential Case:
	Implications for Architectural Scaling�Parallel Case:
	Summary of Direct Linear Algebra
	Avoiding Communication in Iterative Linear Algebra
	Minimizing Communication of GMRES to solve Ax=b
	Slide Number 26
	Speed ups of GMRES on 8-core Intel Clovertown�
	Exascale predicted speedups for �Matrix Powers Kernel over SpMV�for 2D Poisson (5 point stencil)
	Summary of Iterative Linear Algebra
	For further information
	Summary
	Extra Slides
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	We’re hiring!
	7 Dwarfs of High Performance Computing (HPC)
	7 Dwarfs – Are they enough?
	13 Motifs (nee “Dwarf”) of �Parallel Computing�� Popularity: (Red Hot / Blue Cool)
	 Motifs in ParLab Applications �(Red Hot / Blue Cool)
	One-sided Factorizations (LU, QR)
	Communication-Avoiding LU:� Use reduction tree, to do “Tournament Pivoting”
	Collaborators
	Can we do even better?
	Can we do even better?
	Beating #words_moved = (n2/P1/2)
	Lower bound for �Strassen’s fast matrix multiplication
	Sequential Strong Scaling
	Parallel Strong Scaling
	Weak Scaling
	Performance Model Assumptions
	Slide Number 70
	Observations

