
AMS

Institute of Computing Technology
Chinese Academy of Sciences

High-Efficient Architecture of
Godson-T Many-Core Processor

Dongrui Fan, Hao Zhang, Da Wang, Xiaochun Ye,

Fenglong Song, Junchao Zhang, Lingjun Fan

Advanced Micro-System Group
National Key Laboratory of Computer Architecture,

Institute of Computing Technology, Chinese Academy of Sciences

AMS Godson-T | HOT CHIPS 20112

Overview

 Microprocessor Architecture Challenges

 Godson-T Features for Parallel Program

 Godson-T Design and Implementation

AMS Godson-T | HOT CHIPS 20113

 Memory wall + Power wall + ILP wall = Brick wall !
What parallel architecture will be successful?

 Parallel architectures come to rescue, superscalar processor is being
replaced by on-chip multi-core / many-core processor

Microprocessor Architecture Revolution

Power, Complexity

Performance

Simpler

Processor Core

Superscalar

Processor Core

Multi-Core

Many-Core

Power Wall

ILP Wall

AMS Godson-T | HOT CHIPS 20114

Exploiting Polymorphic Parallelism

Instruction-Level

Parallelism

Heterogenous

Many-Core

Godson-3

Godson-T

Thread-Level Parallelism

With Powerful

Streaming Unit

With moderate

DLP and strong

TLP exploitation

AMS Godson-T | HOT CHIPS 20115

Many-Core Challenges: The 5 P’s

 Power efficiency challenge
 Performance per watt is the new metric – Dark Silicon will appear in 2020

when facing 11nm process technology

 Performance challenge
 How to scale from 1 to 1000 cores – the number of cores is the new

Megahertz

 Programming challenge
 How to provide a converged many core solution in a standard programming

environment

 Parallelism challenge
 How to exploit parallelism through software and hardware co-design

 Platform challenge
 How to maximize the usability, such as, runtime system (OS), compiler &

library, many-core debug…

AMS Godson-T | HOT CHIPS 20116

What we could help……

Productivity Side:

 Most sequential programmers are not ready to switch into parallel
programming
 conservative programming model and make incremental improvement?

 Unique programming model cannot solve all problems efficiently;
 support multiple programming features efficiently?

 Locks are messy
 new way to eliminate deadlock?

……

Performance Side:
 On-chip synchronization is fast;

 handle all synchronizations on-chip?
 Flops are cheap, memory communications are expensive;

 trade flops for communication latency?
 Fine-grained parallelism should be taken into consideration;

 enable data-driven thread execution on chip?
……

Take this carefully, because it may affect productivity !

AMS Godson-T | HOT CHIPS 20117

Data
Communication concept

Fine Grained
Thread division

Thread
Synchronization

Motivation

Target at
HPC

Godson-T
Many cores to

accelerate one program

Cost CostMethod

AMS Godson-T | HOT CHIPS 20118

Overview
 Microprocessor Architecture Challenges

› Memory wall + Power wall + ILP wall

› The 5P’s: Many-core Processor Challenges

 Godson-T Features for Parallel Program
› Godson-T architecture overview

› Architectural supports for multithreading

› Software runtime system

 Godson-T Design and Implementation
› Journey of design and implementation

› Software and hardware co-simulation

› Prototype

AMS Godson-T | HOT CHIPS 20119

Architecture Overview of Godson-T

I/O
Controller

Synchronization
Manager

L2
Cache Bank

Memory Controller

M
em

ory C
ontrollerM

em
or

y
C

on
tr

ol
le

r

Memory Controller

Private I-$

Router

Fetch &
Decode

Register Files

INT
ALU

Sync
Unit

FP/
Vector
ALU

Processing Core

SPM

Local
Memory

D$

DTA
MAC
ALU

Private
Memroy

L1$

CORE

R

GodsonT

Processor

Runtime

System

Program

AMS Godson-T | HOT CHIPS 201110

Processing Core

FETCH

DECODE

Vector

Register File

Instruction

Buffer

Load/Store/

Synchronization

Unit

Vector/

Floating-Point

 Unit

32 Bytex 2x1

1 instruction

Vector/

Fixed-Point

 Unit

32Byte 2r/1w

L0_Icache

4Byte

Router

16Byte

16Byte in/out msg

L0_Dcache

16Byte

SPM/

L1 Cache

8Byte

1 instruction

 ISA: MIPS (user), SIMD-ext., sync-ext.

 8-stage pipeline

 Dual-issue per thread

 Expected SIMD
 Load, Store, Data Move,

Arithmetic ……

 Fast level-1 memory

 16KB private memory
 Automatically mapped into stack

address space

 Full/empty bit tagged on each 64-bit
slot enables efficient producer-
consumer style synchronization

 Communication with external modules
through message packets

AMS Godson-T | HOT CHIPS 201111

Interconnection

 Separated routers with each processing core
 Static XY wormhole routing

 Round-Robin arbitration

 Two independent physical networks

 Duplex 128bit link for each network

 Guaranteed in-order point-to-point communication
 Deadlock-free & livelock-free

 Scalable and power-efficient for MESH topology

 Low latency core-to-core communication

 Separated networks allowing traffic segregation and tolerating burst
DMA transfer

AMS Godson-T | HOT CHIPS 201112

Memory Hierarchy

Reg

Local
Memory

L2 Cache

Off-Chip Memory

Data Transfer
Bandwidth

512GB/s

128GB/s

51.2GB/s

Each processing core with 32 fixed-
point and 32 floating-point registers

32KB local memory, including L1$D,
SPM

16 address-interleaved L2 cache
banks, 128KB each

4 DDR3-1600 memory controllers

AMS Godson-T | HOT CHIPS 201113

Power Management

RT RT RT RT

RT RT RT RT

RT RT RT RT

RT RT RT RT

• Monitor status of each
core at program level

• Shut down or turn on
cores separately

• Reassign tasks

RT RT RT RT

RT RT RT RT

RT RT RT RT

RT RT RT RT

RT RT RT RT

RT RT RT RT

RT RT RT RT

RT RT RT RT

RT RT RT RT

RT RT RT RT

RT RT RT RT

RT RT RT RT

AMS Godson-T | HOT CHIPS 201114

Overview
 Microprocessor Architecture Challenges

› Memory wall + Power wall + ILP wall

› The 5P’s: Many-core Processor Challenges

 Godson-T Features for Parallel Program
› Godson-T architecture overview

› Architectural supports for multithreading

› Software runtime system

 Godson-T Design and Implementation
› Journey of design and implementation

› Software and hardware co-simulation

› Prototype

AMS Godson-T | HOT CHIPS 201115

Thread Communication & Synchronization
Lock-Based Cache Coherent Protocol

 Lazy cache coherent protocol
 Pure mutual-exclusion synchronization instruction without memory

accesses;
 Eliminate busy-waiting for locks;
 More scalable than bus-snoopy and directory-based cache protocol;
 Enable hardware deadlock detecting.

Mini Core Mini Core

Inte rc o nne c t

int mutual_func_a()

{

 ……

 acquire_lock(LOCK_VAL);

 X = 3;

 release_lock(LOCK_VAL);

 ……

}

int mutual_func_b()

{

 ……

 acquire_lock(LOCK_VAL);

 Y = X;

 Z = X;

 release_lock(LOCK_VAL);

 ……

}

Synchronization

Manager
Shared L2 Cache

Private Cache Private Cache

Inte rc o nne c t

X=0 X=0X=0

X=3

ACQ. ACQ.REL. REL.

ACK.ACK.
X=0

X=3

CORE 0 UNLOCK
CORE 1 UNLOCK
CORE 0 LOCKED
CORE 1 UNLOCK
CORE 0 LOCKED
CORE 1 WAITING
CORE 0 UNLOCK
CORE 1 LOCKED
CORE 0 UNLOCK
CORE 1 UNLOCK

AMS Godson-T | HOT CHIPS 201116

Thread Communication & Synchronization

Data Transfer Agent (DTA)

invovled data block address

…… ……

chunk stride chunk stride

block stride block stride
block

(b) 2D strided DTA operations

DTA DTA

SPM SPM

……

on-chip network

……

……

Router Router Router

L2
Cache

……

off-chip
memory

DTA horizontal operation DTA vertical operation DTA vertical operation

(a) vertical and horizontal DTA operations

 Programmable asynchronous
data transfer agent
 Support vertical and horizontal

DTA operations (such as
prefetch)

 Data transfers between multi-
dimension addresses (such as
matrix inversion)

 Network load perception,
automatically flow control
(improve bandwidth-efficiency)

 Support fine-grain synchronous
operations

AMS 17

Synchronized DTA Operations

1 0
*load.future (s)/
store.future (s)/
store.sync (f)

load.sync (s)

store.sync (s)

load.future (f)/
store.future (f)/

load.sync (f)

(s): successfully perform on the state of full/empty bit
(f): failed to perform on the state of full/empty bit

Target
Node

Source
Node

Traffic
Awareness

Node

AMS Godson-T | HOT CHIPS 201118

Evaluating On-chip DTA

SGEMM 1-D FFT
0

10

20

30

40

50

60

70

80

90

100

110

120

130

72.8
64.8

122.8
127.5

24.7
19.7

63.7

P
er

fo
rm

an
ce

 (G
FL

O
P

S
)

Kernels

 Cache
 SPM, without DTA
 SPM, with DTA
 Theoretical

72.9

Pe rfo rm an ce co m pariso n s o f SGEMM an d 1-D FFT

Benchmark Processor Godson-T Cell Cyclops-64 GTX8800

SGEMM
Efficiency 95.9% 1 99.9% 2 43.4% 60.0%

Performance 122.81 204.7 13.9 206.0

1-D FFT
Efficiency 33.2% 20.4% 25.8% 29.9%

Performance 63.72 41.8 20.7 155.0

1 The SGEMM kernel contains only
multiply-and-add operation, so that the
ideal peak performance is measured by
the multiply-and-add function unit, which
is 128GFLOPS.

2 Efficiency of SGEMM on Cell is
slightly better than that on Godson-T,
because 256KB SPM for each SPE on
Cell makes the better utilization of data
locality.

AMS 19

Evaluating Synchronization without Memory

0 8 16 24 32 40 48 56 64

0.1

1

10

0 8 16 24 32 40 48 56 64
1E-3

0.01

0.1

1

10

100

1000

0 8 16 24 32 40 48 56 64
0.01

0.1

1

(c) average time for each load(b) lock transferring overhead

Ti
m

e
(u

s)

of threads

 FAA-based
 SM-based
 Pthread

(a) lock overhead without lock contention
of threads # of threads

0 8 16 24 32 40 48 56 64
0.01

0.1

1

10

100

1000

0 8 16 24 32 40 48 56 64
0.01

0.1

1

10

100

1000

10000

0 8 16 24 32 40 48 56 64
0.01

0.1

1

10

100

1000

10000

(c) average time of each load(b) barrier overhead with load imbalancing

Ti
m

e
(u

s)

of threads

 SM-Based
 Pthread

(a) barrier overhead without workload
of threads # of threads

AMS 20

Evaluating Full-empty Bit Synchronization

Livermore loop 6
for (i=1 ; i<n ; i++)

for (k=0 ; k<i ; k++)
W[i] += B[k][i] * W[(i-k)-1];

0 8 16 24 32 40 48 56 64

0

20

40

60

80

100

120

N
or

m
al

iz
ed

 S
pe

ed
up

of threads

 coarse-grain sync.
 fine-grain sync.
 synchronized DTA

Speedup of Livermore Loop 6

0 8 16 24 32 40 48 56 64
0

8

16

24

32

40

48

56

64

Sp
ee

du
p

no
m

al
iz

ed
 to

 s
er

ai
l p

er
fo

rm
an

ce

of threads

Speedup of 2-D Wavefront

AMS Godson-T | HOT CHIPS 201121

Overview
 Microprocessor Architecture Challenges

› Memory wall + Power wall + ILP wall

› The 5P’s: Many-core Processor Challenges

 Godson-T Features for Parallel Program
› Godson-T architecture overview

› Architectural supports for multithreading

› Software runtime system

 Godson-T Design and Implementation
› Journey of design and implementation

› Software and hardware co-simulation

› Prototype

AMS Godson-T | HOT CHIPS 201122

Pthread-like Thread Execution using Private

Memory
 Support master-slave style thread execution;
 Programming easily: C programming model + Pthread API;
 Compatible with large amount of conventional codes on shared

memory system.

Inte rc o nne c t

int mater_func()

{

 ……

 int thread_id =

 godsont_ create_thread(slave_func, 2, param_array);

 ……

}

int slave_func(int argc, int argv[])

{

 // do computation;

 ……

 godsont_exit(0);

}

SPM

Stack

Pointer

ab

1. Master transmits
parameters to slave;

2. Master setups PC and
register context for slave;

3. Slave function begins
execution, private memory
acts as a local stack.

PC

Stack v.s. L1-D$ accesses ≈ 30 (8x8 matrix multiply, no opt.)

Tens of cycles to create or terminate a thread.

AMS Godson-T | HOT CHIPS 201123

GodRunner
Software Stack

Applications
(ANSI C Programs)

Pthreads-like
Library

GNU C Compiler and
Binutils

C Libraries

Godson-T Architecture
Simulator (GAS)

“GodRunner” Runtime System

Application Binary

Static

Dynamic

Software

Hardware

The programmers majorly focus
on expressing parallelism, While the
processor and runtime system
concentrate on efficient parallel
executions.
The library provides a rich set of
APIs for task management,
including batch thread management.
Programmer is responsible for
creating,terminating and
synchronizing tasks by inserting
appropriate Pthreads-like APIs.

AMS Godson-T | HOT CHIPS 201124

GodRunner
Runtime System

 GodRunner permits programmers
to create more tasks than hardware
thread units, and transparently maps
them to hardware thread units at
runtime.

AMS 25

Evaluating the Scalability of

Performance

0 8 16 24 32 40 48 56 64
0

8

16

24

32

40

48

56

64

Sp
ee

du
p

of Threads

 pFind (32K pep.)
 iBlastP (600 seq.)
 FFT (m=16)
 RADIX (n=256k)
 LU (n=512)
 CHOLESKY (tk29.O)

Speedup of the bioinformatics and SPLASH-2 benchmarks on Godson-T

AMS Godson-T | HOT CHIPS 201126

Overview
 Microprocessor Architecture Challenges

› Memory wall + Power wall + ILP wall

› The 5P’s: Many-core Processor Challenges

 Godson-T Features for Parallel Program
› Godson-T architecture overview

› Architectural supports for multithreading

› Software runtime system

 Godson-T Design and Implementation
› Journey of design and implementation

› Software and hardware co-simulation

› Prototype

AMS Godson-T | HOT CHIPS 201127

Journey of Godson-T

Data-driven
parallelism

Fast on-chip
synchronization

Management

Efficient
implicit/explicit

memory
management

Efficient task
management

Fast and
accurate

simulation

Maximize
parallelism
exploitation

High-performance
synchronization

High-performance
communication

High-performance and ease-to-use
task management

Research platform

Tape Out

AMS Godson-T | HOT CHIPS 201128

Monitor/Analysis/Evaluation/Platform

AMS Godson-T | HOT CHIPS 201129

Godson-T Many-Core Prototype

 64 light-weight processing mini cores currently

 16-core sample:130nm, 230mm2 , SMIC

 Target to domain-specific parallel acceleration

Core Coer Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core Sync.

Manager

L2

Cache

L2

Cache

L2

Cache

L2

Cache

IO

Ctrl.

Chip On Mind Concept
RTL

Chip on EDA
PHY Design

Chip on Silicon
Wafer

Chip in Package
Package

Chip on Board
System

AMS Godson-T | HOT CHIPS 201130

Conclusions

 Exploiting parallelism on multiple level
 Without disturbing DLP, Can merge with DLP processors

 Exploiting fine-grained data-driven TLP

 A scalable many-core architecture research platform
 Lock-based cache coherence protocol

 Asynchronous DTA and hardware-supported synchronization mechanisms

 Pthreads-like programming model, and versatile parallel libraries

 Flexible to extend, easy to use, and simple to implement

 Keep balance between software and hardware to gain
acceptable programmability and performance

AMS Godson-T | HOT CHIPS 201131

Thank you!

	High-Efficient Architecture of �Godson-T Many-Core Processor
	Overview
	Slide Number 3
	Exploiting Polymorphic Parallelism
	Many-Core Challenges: The 5 P’s
	What we could help……
	Motivation
	Overview
	Architecture Overview of Godson-T
	Processing Core
	Interconnection
	Memory Hierarchy
	Power Management
	Overview
	Thread Communication & Synchronization�Lock-Based Cache Coherent Protocol
	Thread Communication & Synchronization �Data Transfer Agent (DTA)
	Synchronized DTA Operations
	Evaluating On-chip DTA
	Evaluating Synchronization without Memory
	Evaluating Full-empty Bit Synchronization
	Overview
	Pthread-like Thread Execution using Private Memory
	GodRunner � Software Stack
	GodRunner� Runtime System
	Evaluating the Scalability of �Performance
	Overview
	Journey of Godson-T
	Monitor/Analysis/Evaluation/Platform
	Godson-T Many-Core Prototype
	Conclusions
	Slide Number 31

