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Overview

 Microprocessor Architecture Challenges

 Godson-T Features for Parallel Program

 Godson-T Design and Implementation
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 Memory wall + Power wall + ILP wall = Brick wall !
What parallel architecture will be successful?

 Parallel architectures come to rescue, superscalar processor is being 
replaced by on-chip multi-core / many-core processor

Microprocessor Architecture Revolution

Power, Complexity

Performance

Simpler 

Processor Core
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Processor Core

Multi-Core

Many-Core

Power Wall

ILP Wall
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Exploiting Polymorphic Parallelism
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With Powerful 
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Many-Core Challenges: The 5 P’s

 Power efficiency challenge
 Performance per watt is the new metric – Dark Silicon will appear in 2020 

when facing 11nm process technology

 Performance challenge
 How to scale from 1 to 1000 cores – the number of cores is the new 

Megahertz

 Programming challenge
 How to provide a converged many core solution in a standard programming 

environment

 Parallelism challenge
 How to exploit parallelism through software and hardware co-design

 Platform challenge
 How to maximize the usability, such as, runtime system (OS), compiler & 

library, many-core debug…



AMS Godson-T | HOT CHIPS 20116

What we could help……

Productivity Side:

 Most sequential programmers are not ready to switch into parallel 
programming
 conservative programming model and make incremental improvement? 

 Unique programming model cannot solve all problems efficiently;
 support multiple programming features efficiently?

 Locks are messy
 new way to eliminate deadlock?

……

Performance Side: 
 On-chip synchronization is fast;

 handle all synchronizations on-chip?
 Flops are cheap, memory communications are expensive;

 trade flops for communication latency?
 Fine-grained parallelism should be taken into consideration;

 enable data-driven thread execution on chip?
……

Take this carefully, because it may affect productivity !
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Overview
 Microprocessor Architecture Challenges

› Memory wall + Power wall + ILP wall

› The 5P’s: Many-core Processor Challenges

 Godson-T Features for Parallel Program
› Godson-T architecture overview

› Architectural supports for multithreading

› Software runtime system

 Godson-T Design and Implementation
› Journey of design and implementation

› Software and hardware co-simulation 

› Prototype
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Architecture Overview of Godson-T 
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Processing Core

FETCH

DECODE

Vector
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Instruction 
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Load/Store/

Synchronization

Unit

Vector/
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 Unit 

 

32 Bytex 2x1

1 instruction

Vector/

Fixed-Point

 Unit 

 

32Byte 2r/1w

L0_Icache

4Byte

Router

16Byte

16Byte in/out msg

L0_Dcache

16Byte

SPM/

L1 Cache

8Byte

1 instruction

 ISA: MIPS (user), SIMD-ext., sync-ext.

 8-stage pipeline

 Dual-issue per thread

 Expected SIMD
 Load, Store, Data Move, 

Arithmetic ……

 Fast level-1 memory

 16KB private memory
 Automatically mapped into stack 

address space

 Full/empty bit tagged on each 64-bit 
slot enables efficient producer-
consumer style synchronization

 Communication with external modules 
through message packets
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Interconnection

 Separated routers with each processing core
 Static XY wormhole routing 

 Round-Robin arbitration

 Two independent physical networks

 Duplex 128bit link for each network

 Guaranteed in-order point-to-point communication
 Deadlock-free & livelock-free

 Scalable and power-efficient for MESH topology 

 Low latency core-to-core communication

 Separated networks allowing traffic segregation and tolerating burst 
DMA transfer
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Memory Hierarchy

Reg

Local
Memory

L2 Cache

Off-Chip Memory

Data Transfer 
Bandwidth

512GB/s

128GB/s

51.2GB/s

Each processing core with 32 fixed-
point and 32 floating-point registers

32KB local memory, including L1$D, 
SPM

16 address-interleaved L2 cache 
banks, 128KB each

4 DDR3-1600 memory controllers
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Power Management
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Overview
 Microprocessor Architecture Challenges

› Memory wall + Power wall + ILP wall

› The 5P’s: Many-core Processor Challenges

 Godson-T Features for Parallel Program
› Godson-T architecture overview

› Architectural supports for multithreading

› Software runtime system

 Godson-T Design and Implementation
› Journey of design and implementation

› Software and hardware co-simulation 

› Prototype
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Thread Communication & Synchronization
Lock-Based Cache Coherent Protocol

 Lazy cache coherent protocol
 Pure mutual-exclusion synchronization instruction without memory 

accesses; 
 Eliminate busy-waiting for locks;
 More scalable than  bus-snoopy and directory-based cache protocol;
 Enable hardware deadlock detecting.

Mini Core Mini Core

Inte rc o nne c t

int mutual_func_a()

{

    ……

    acquire_lock(LOCK_VAL);

    X = 3;

    release_lock(LOCK_VAL);

    ……

}

int mutual_func_b()

{

    ……    

    acquire_lock(LOCK_VAL);

    Y = X;

    Z = X;

    release_lock(LOCK_VAL);

    ……

}

Synchronization

Manager
Shared L2 Cache

Private Cache Private Cache

Inte rc o nne c t

X=0 X=0X=0

X=3

ACQ. ACQ.REL. REL.

ACK.ACK.
X=0

X=3

CORE 0 UNLOCK
CORE 1 UNLOCK 
CORE 0 LOCKED
CORE 1 UNLOCK 
CORE 0 LOCKED
CORE 1 WAITING
CORE 0 UNLOCK
CORE 1 LOCKED
CORE 0 UNLOCK
CORE 1 UNLOCK
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Thread Communication & Synchronization 

Data Transfer Agent (DTA)

invovled data block address

…… ……

chunk stride chunk stride

block stride block stride
block

(b) 2D strided DTA operations

DTA DTA

SPM SPM

……

on-chip network

……

……

Router Router Router

L2 
Cache

……

off-chip 
memory

DTA horizontal operation DTA vertical operation DTA vertical operation

(a) vertical and horizontal DTA operations

 Programmable asynchronous 
data transfer agent
 Support vertical and horizontal 

DTA operations (such as 
prefetch)

 Data transfers between multi-
dimension addresses (such as 
matrix inversion )

 Network load perception, 
automatically flow control
(improve bandwidth-efficiency)

 Support fine-grain synchronous 
operations
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Synchronized DTA Operations

1 0
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load.sync (s)

store.sync (s)
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Evaluating On-chip DTA
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Benchmark Processor Godson-T Cell Cyclops-64 GTX8800 

SGEMM
Efficiency 95.9% 1 99.9% 2 43.4% 60.0%

Performance 122.81 204.7 13.9 206.0

1-D FFT
Efficiency 33.2% 20.4% 25.8% 29.9%

Performance 63.72 41.8 20.7 155.0

1 The SGEMM kernel contains only 
multiply-and-add operation, so that the 
ideal peak performance is measured by 
the multiply-and-add function unit, which 
is 128GFLOPS.

2 Efficiency of SGEMM on Cell is 
slightly better than that on Godson-T, 
because 256KB SPM for each SPE on 
Cell makes the better utilization of data 
locality.
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Evaluating Synchronization without Memory
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Evaluating Full-empty Bit Synchronization

Livermore loop 6
for ( i=1 ; i<n ; i++)

for ( k=0 ; k<i ; k++)
W[i] += B[k][i] * W[(i-k)-1];
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Overview
 Microprocessor Architecture Challenges

› Memory wall + Power wall + ILP wall

› The 5P’s: Many-core Processor Challenges

 Godson-T Features for Parallel Program
› Godson-T architecture overview

› Architectural supports for multithreading

› Software runtime system

 Godson-T Design and Implementation
› Journey of design and implementation

› Software and hardware co-simulation 

› Prototype
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Pthread-like Thread Execution using Private 

Memory
 Support master-slave style thread execution;
 Programming easily: C programming model + Pthread API;
 Compatible with large amount of conventional codes on shared 

memory system.

Inte rc o nne c t

int mater_func()

{

    ……

    int thread_id =  

       godsont_ create_thread(slave_func, 2, param_array);

    ……

}

int slave_func(int argc, int argv[])

{

    // do computation;

    ……

    godsont_exit(0);

}

SPM

Stack 

Pointer

ab

1. Master transmits 
parameters to slave;

2. Master setups PC and 
register context for slave;

3. Slave function begins 
execution, private memory 
acts as a local stack.

PC

Stack v.s. L1-D$ accesses ≈ 30     (8x8 matrix multiply, no opt.)

Tens of cycles to create or terminate a thread.
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GodRunner 
Software Stack

Applications
(ANSI  C Programs)

Pthreads-like 
Library

GNU C Compiler and 
Binutils

C Libraries

Godson-T Architecture 
Simulator (GAS)

“GodRunner” Runtime System

Application Binary

Static

Dynamic

Software

Hardware

The programmers majorly focus 
on expressing parallelism, While the 
processor and runtime system 
concentrate on efficient parallel 
executions.
The library provides a rich set of 
APIs for task management, 
including batch thread management.
Programmer is responsible for 
creating,terminating and 
synchronizing tasks by inserting 
appropriate Pthreads-like APIs.
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GodRunner
Runtime System

 GodRunner permits programmers 
to create more tasks than hardware 
thread units, and transparently maps 
them to hardware thread units at 
runtime.
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Evaluating the Scalability of 

Performance
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Overview
 Microprocessor Architecture Challenges

› Memory wall + Power wall + ILP wall

› The 5P’s: Many-core Processor Challenges

 Godson-T Features for Parallel Program
› Godson-T architecture overview

› Architectural supports for multithreading

› Software runtime system

 Godson-T Design and Implementation
› Journey of design and implementation

› Software and hardware co-simulation 

› Prototype
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Journey of Godson-T 
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Monitor/Analysis/Evaluation/Platform
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Godson-T Many-Core Prototype

 64 light-weight processing mini cores currently

 16-core sample:130nm, 230mm2 , SMIC

 Target to domain-specific parallel acceleration
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Core Core Core Core

Core Core Core Core
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Chip in Package
Package

Chip on Board
System
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Conclusions

 Exploiting parallelism on multiple level
 Without disturbing DLP, Can merge with DLP processors

 Exploiting fine-grained data-driven TLP

 A scalable many-core architecture research platform
 Lock-based cache coherence protocol

 Asynchronous DTA and hardware-supported synchronization mechanisms

 Pthreads-like programming model, and versatile parallel libraries

 Flexible to extend, easy to use, and simple to implement 

 Keep balance between software and hardware to gain 
acceptable programmability and performance
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Thank you!
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