

The Cavium 32 Core OCTEON II 68xx

R. E. Kessler

Cavium, Inc.

Hot Chips 23

August, 2011

- Introduction to OCTEON and 68xx
- OCTEON II 68xx Scalability Techniques
 - Efficient CPU cores
 - Cache coherence, interconnect & memory bandwidth, chip floorplan
 - Power scalability
 - Hardware work queueing, scheduling, synchronization, and ordering assist
 - Coprocessor acceleration
- Chip Performance Results

About Cavium, Inc.

Founded 2001

NASDAQ IPO (CAVM) 2007

825 Employees, 625 in Engineering

- \$250+M annual revenue run-rate, among fastestgrowing public technology companies
- Profitable with Strong Financials: ~\$70M cash & cash equivalents, no debt, strong cash flow
- Global Footprint: US, India, Taiwan, China, Canada
- MIPS and ARM based Processor SOCs
- Addressing Multi-billion dollar Networking, Communications and Digital Home markets
- Voted #1 Multi-core processor vendor by Heavy Reading 2010 survey of 50+ worldwide networking OEMs

Cavium SoC's for Range of Target Markets

Networking			Consumer	Wireless		Storage
Enterprise & Edge Routers	Enterprise, Metro Switches & L4- L7 Equipment	Security & DPI Equipment	Home, Video, High Bandwidth Broadband	3G, 4G Infra- structure	LAN: Controllers & Enterprise AP's	Storage Networking, Arrays & Adapters
Sec	curity, Compressoad & Virtualizat	CTEON Sion, DPI	Video SoCs PureVu Media & Set Top SoCs Celestial SMB, Home & NAS SoCs ECONA 3G/ 4G Data ODYS	my's	WLAN Controller & AP SoCs OCTEON	Intelligent Adapter SoC OCTEON

Highly Integrated SOCs enable Lower Real-Estate, Cost & Power

OCTEON Design Philosophy

High Application
Performance at Low
Power and Cost

- Many power and area efficient MIPS64 CPU cores
- Hardware acceleration for high packet throughput, and content processing, e.g. compression, RegEx pattern match, RAID5/6
- Integrated networking and memory controllers

Scalable Performance

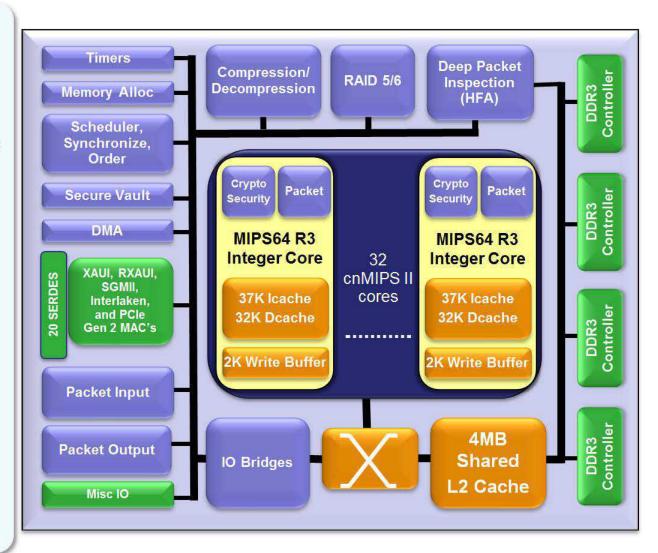
- Take advantage of packet and flow-level parallelism
- Linear performance scaling with increasing number of cores enabled by proven hardware features

Optimized ISA

- MIPS64 version 3 instruction set with OCTEON enhancements
- · More than 80 instructions added on top of MIPS ISA
- Full C programming and OS support

Flexible Hardware Security Acceleration

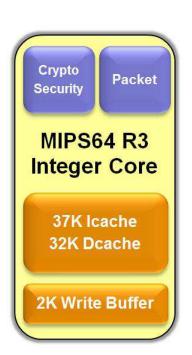
- Hardware accelerators in each core for a comprehensive set of asymmetric and symmetric algorithms: RSA, DH, ECC, IPSec, SSL/TLS, KASUMI, SNOW3G, others
- Adapt to new algorithms through software updates


Software Compatible Roadmap

- Single SDK to develop software for all OCTEONs
- Software compatible from 1-32 cores

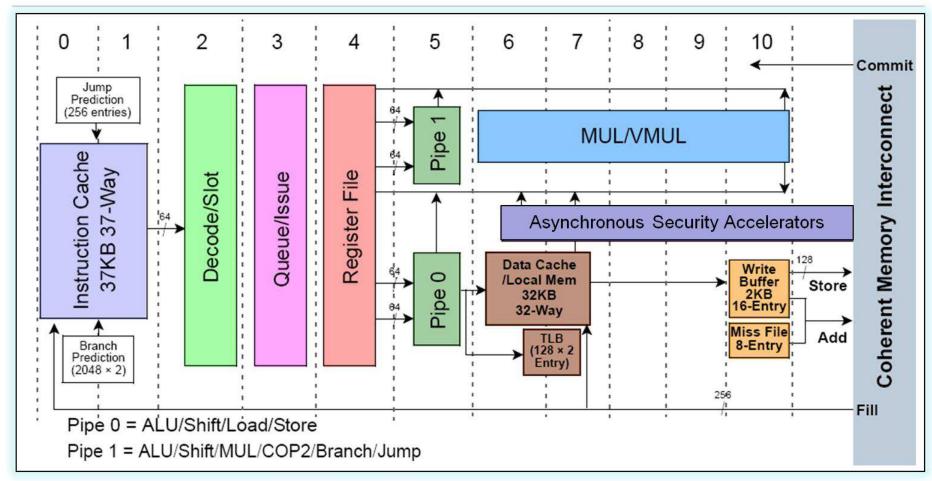
OCTEON II CN68XX Block Diagram SCAVIUM

- 32 custom designed MIPS64 cores
- Up to 1.5 GHz
- Up to 96G inst/sec, 40+Gbps
- 4 72-bit DDR3 interfaces up to 1600 MHz data rate
- Optimized for service-rich networking, security, wireless, and storage apps
- HW Acceleration:
 - ✓ DPI acceleration with integrated HFA (RegEx Engine)
 - ✓ Comprehensive crypto algorithms and RNG
 - ✓ TCP, Packet Processing
 - ✓ Compression
 - ✓ RAID5/6, De-dup
 - ✓ Multi-core scaling


- Introduction to OCTEON and 68xx
- OCTEON II 68xx Scalability Techniques
 - Efficient CPU cores
 - Cache coherence, interconnect & memory bandwidth, chip floorplan
 - Power scalability
 - Hardware work queueing, scheduling, synchronization, and ordering assist
 - Coprocessor acceleration
- Chip Performance Results

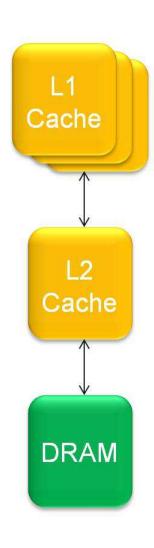
Small CPU Core or Big CPU Core? SCAVIUM

- Many potential Big Core features:
 - Huge caches
 - Very high frequency, deep pipeline
 - Many-way issue
 - Out-of-order issue
 - Floating-point
 - ...
- Important questions:
 - Does the feature add more performance than area/power?
 - Is the feature difficult or expensive to implement, take to production, and support?



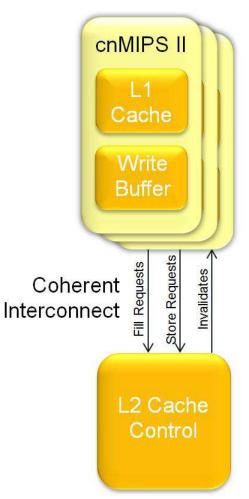
- cnMIPS II Core Goals:
 - General-purpose, industry-standard 64-bit ISA
 - Great fit for networking, security, wireless
 - Excellent MIPS/area & MIPS/watt
 - Use multi-core to scale product line up and down
 - Low latency, deterministic performance
- cnMIPS II Core Non-goals:
 - Highest power
 - Highest cost
 - Greatest complexity (longer implementation time)
 - Largest customer support cost
- Not directly mentioned:
 - Frequency
 - Single-thread performance

cnMIPS II Core 8+ Stage Pipeline


- Shipping at up to 1.8 GHz in 65nm
- Thread-dedicated resources = very deterministic CPU performance
- Highly-associative L1 caches = equivalent miss rate to much larger caches

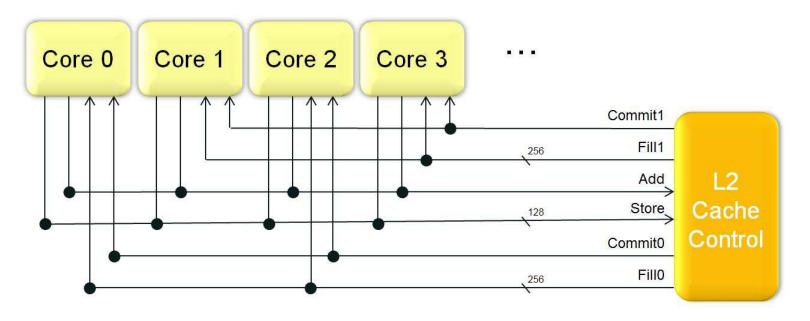
- Introduction to OCTEON and 68xx
- OCTEON II 68xx Scalability Techniques
 - Efficient CPU cores
 - Cache coherence, interconnect & memory bandwidth, chip floorplan
 - Power scalability
 - Hardware work queueing, scheduling, synchronization, and ordering assist
 - Coprocessor acceleration
- Chip Performance Results

OCTEON Cache Policies



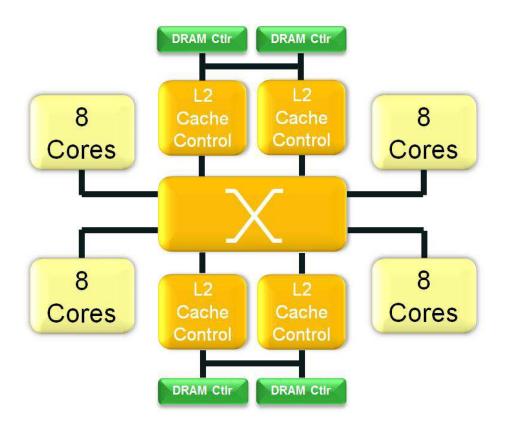
- L1 <-> L2 Cache: Write-through
 - Excellent performance for networking and mobile applications
 - Minimal per-CPU-core cost
 - Simple and highest performance
 - Lowest possible read latencies
 - Allows many outstanding stores, optimizations
 - Automatic L1 error correction
- L2 Cache <-> DRAM: Write-back
 - Standard DDR3 DRAM DIMM's are highest performance with block transfers
 - Minimizes required DRAM bandwidth
 - Don't-write-back feature (e.g. for most of packet data) plus additional cache hints

OCTEON L1<->L2 Coherence and Memory Model



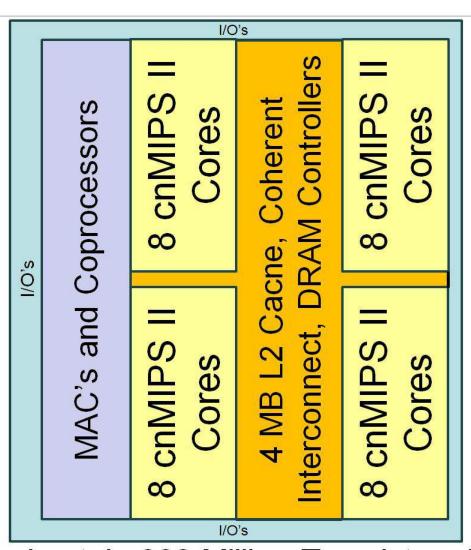

- Write-through, write-invalidate coherence protocol
- L2 Cache Controller is the coherence point
 - L2 controller tracks L1 cache contents
 - Invalidates to maintain L1 coherence
- Aggressive write-buffering in cnMIPS II cores eliminates writes
 - 2 KB merging write buffer
 - Fully-coherent, loosely-consistent memory model
 - Page-wise hints to eliminate writebuffer flushes of private data

Lower Core Count OCTEON Coherent Interconnect



Redrawn:

32 Core OCTEON Coherent Interconnect

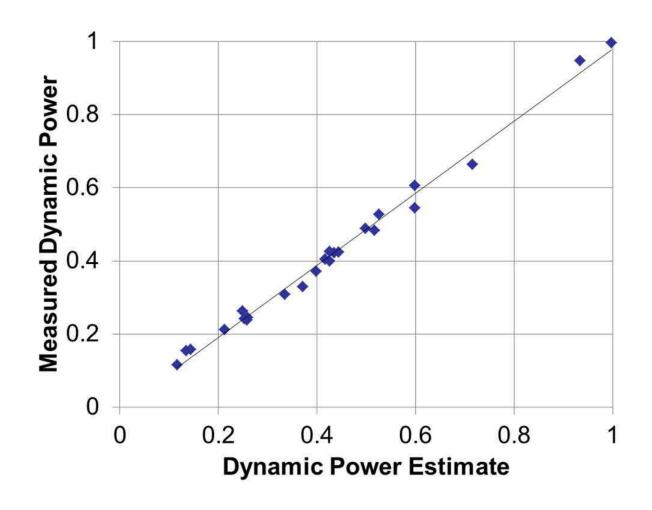


- Crossbar interconnect easily scales to 32 cores
- Optimized for both low latency and high bandwidth
- Flat, deterministic latency profile
- Interconnect provides best combination of scalability and low-power

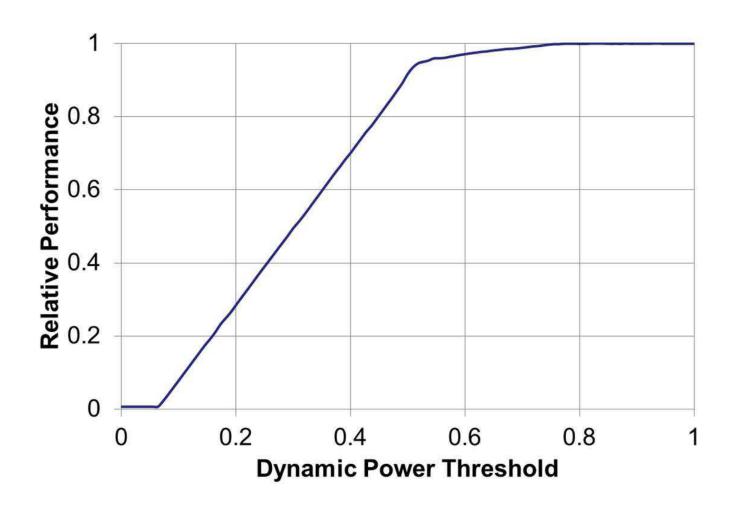
32 Core OCTEON Chip Floorplan

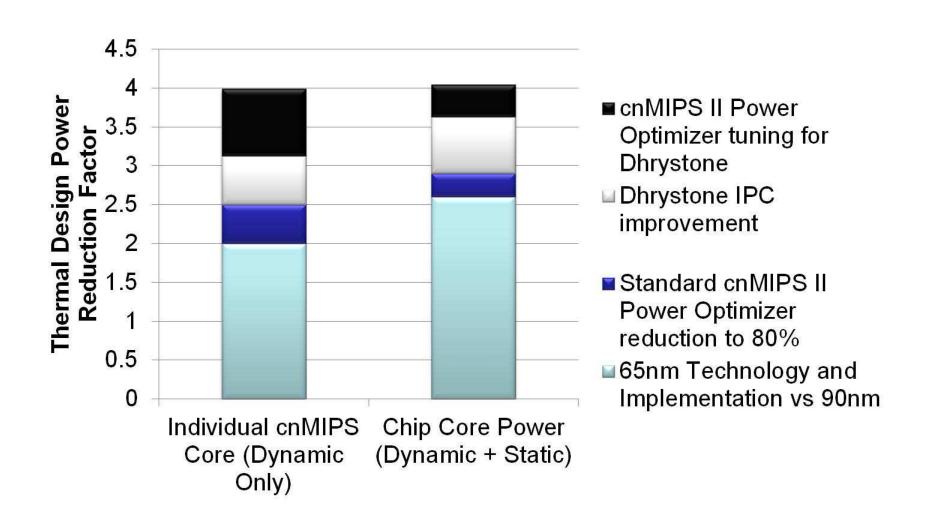
Approximately 800 Million Transistors in 65nm

- Introduction to OCTEON and 68xx
- OCTEON II 68xx Scalability Techniques
 - Efficient CPU cores
 - Cache coherence, interconnect & memory bandwidth, chip floorplan
 - Power scalability
 - Hardware work queueing, scheduling, synchronization, and ordering assist
 - Coprocessor acceleration
- Chip Performance Results


OCTEON 68xx Power Optimizer Technology

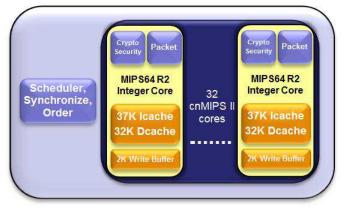
- Per-CPU dynamic power consumption estimates
 - Digital logic that monitors CPU behavior
 - Pipe, functional unit, bus and clock activity monitored
- Per-CPU dynamic power threshold
 - CPU forced to idle when estimate exceeds threshold
 - Power controlled over intervals of 256-1024 cycles
- Per-CPU threshold in a register
 - Software can quickly and easily change it
- Suitable for thermal design or average power reduction:
 - Closed-loop (e.g. thermal sensor) or open-loop thermal solution


Accuracy of Dynamic Power Estimate for Various Applications


Performance vs. Dynamic Power Threshold for Zlib

Thermal Improvements from 16 Core 58xx to 32 Core 68xx OCTEON (per Dhrystone instruction)

OCTEON Power Optimizer Comparison


- The OCTEON solution is unique
- Advantages compared to dynamic voltage and frequency scaling (DVFS):
 - Very fine-grained core-by-core power control
 - A low power application is not penalized
 - Frequency reduction affects all applications
 - 95+% of applications don't even achieve 80% of max spec power
 - Power optimizer settings can change instantly with minimal software interruption
 - Simpler chip and system design
 - Voltage and frequency do not need to change

- Introduction to OCTEON and 68xx
- OCTEON II 68xx Scalability Techniques
 - Efficient CPU cores
 - Cache coherence, interconnect & memory bandwidth, chip floorplan
 - Power scalability
 - Hardware work queueing, scheduling, synchronization, and ordering assist
 - Coprocessor acceleration
- Chip Performance Results

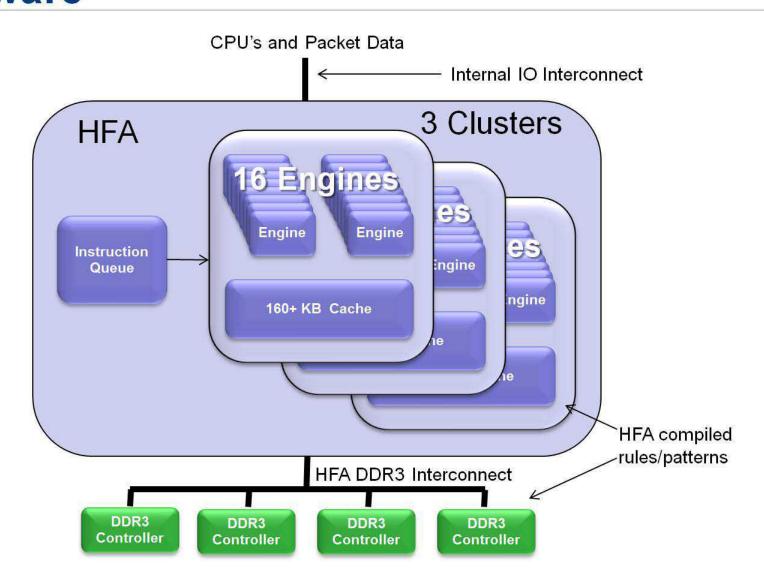
OCTEON Schedule/Synch/Order Hardware

- Work queueing
 - Unlimited-size queues for work
 - Work can be created by software
 - Work can be created by hardware
 - e.g. packet arrival
- Work/Packet Ordering
- Automatic synchronization and lock-removal
- Dynamic work scheduling
 - Hardware selects from amongst input queues
 - Quality of service
 - Different cores can receive different work
 - Integrated with ordering and synchronization
 - Work proceeds only when ordering and synchronization allows

- Introduction to OCTEON and 68xx
- OCTEON II 68xx Scalability Techniques
 - Efficient CPU cores
 - Cache coherence, interconnect & memory bandwidth, chip floorplan
 - Power scalability
 - Hardware work queueing, scheduling, synchronization, and ordering assist
 - Coprocessor acceleration
- Chip Performance Results

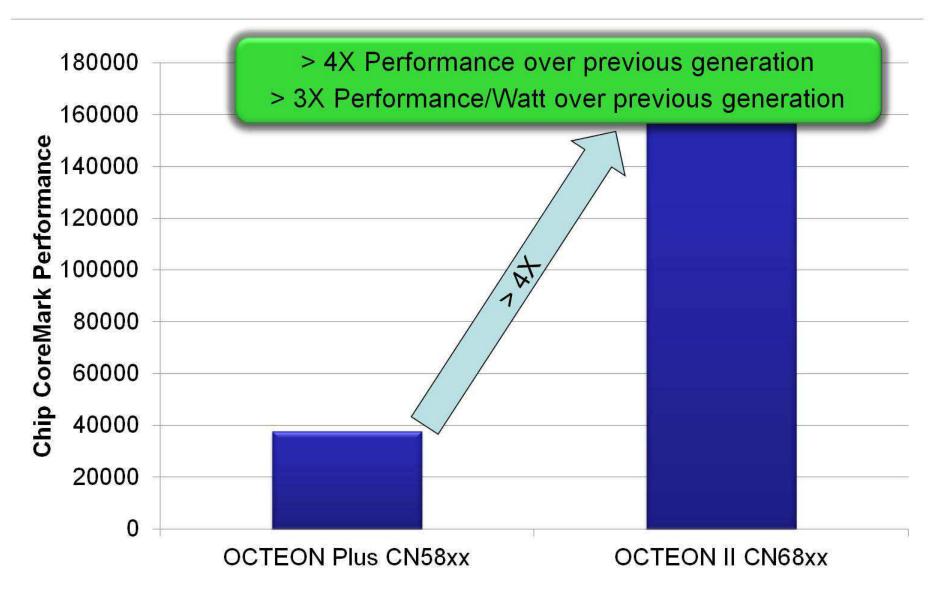
68xx Coprocessors

- 68xx has many coprocessors suitable for many tasks:
 - Packet processing acceleration
 - TCP processing acceleration
 - Security acceleration
 - Compression/Decompression acceleration
 - **–** ...
- But the next few slides focus only on regular expression matching, which is required by Deep-Packet Inspection applications

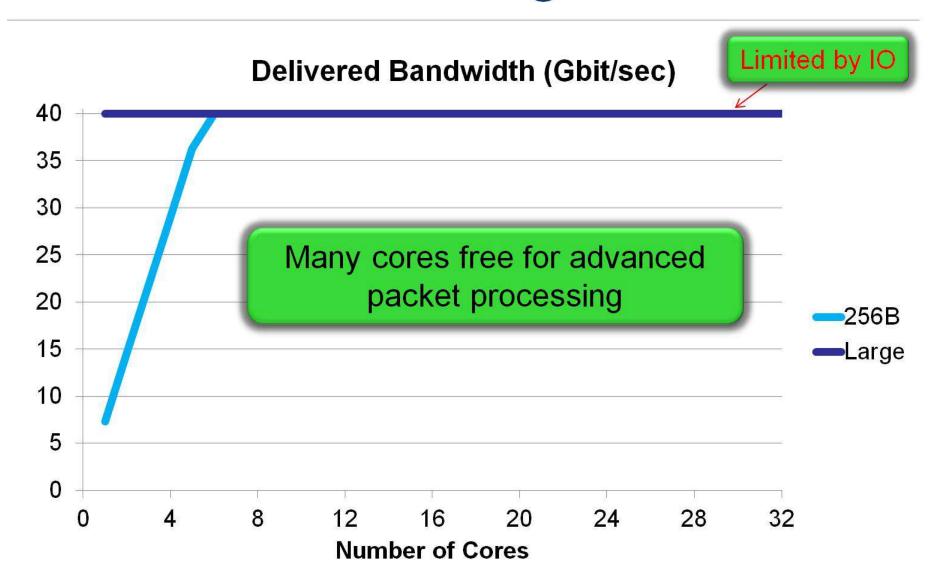


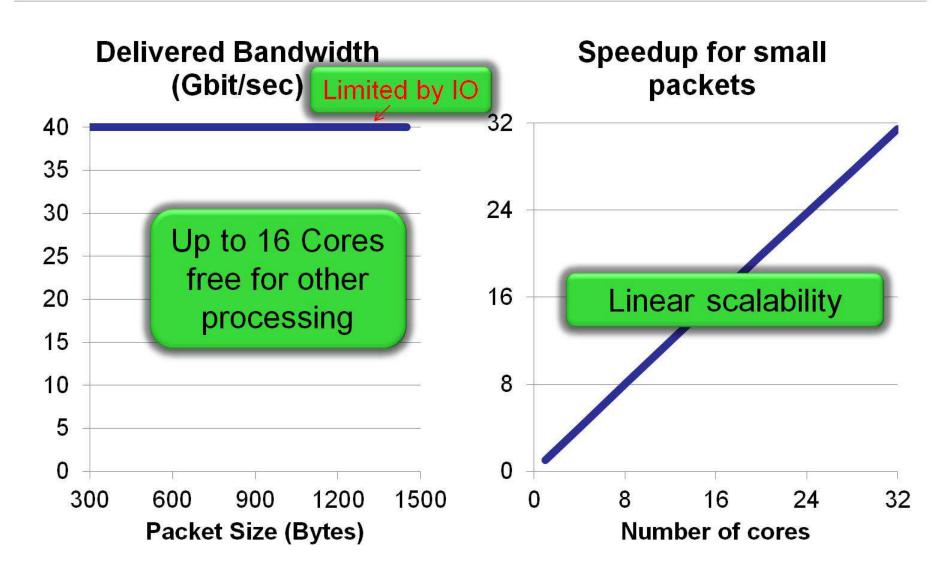
- Many applications require Deep-Packet Inspection (DPI):
 - Intrusion detection/prevention, Packet classification, ...
- We focus on pattern matching here
 - DPI may also require packet, TCP, and other processing that can be accelerated by other OCTEON coprocessors
 - The percentage of data scanned for matches varies for different applications
 - a few percent (e.g. Application Recognition) to most packet bytes (e.g. Anti-Virus, IPS)
- Patterns/rules are often regular expressions
 - Pre-compiled into hardware state machines
- Cavium OCTEON 68xx HFA processing technology:
 - Searches for regular expressions via both:
 - Deterministic Finite Automata (DFA), and
 - Non-deterministic Finite Automata (NFA)
 - Includes graph compression and caching to maximize coverage and performance
 - Compatible with stand-alone NITROX DPI processors from Cavium

68xx Deep Packet Inspection HFA Hardware



- Introduction to OCTEON and 68xx
- OCTEON II 68xx Scalability Techniques
 - Efficient CPU cores
 - Cache coherence, interconnect & memory bandwidth, chip floorplan
 - Power scalability
 - Hardware work queueing, scheduling, synchronization, and ordering assist
 - Coprocessor acceleration
- Chip Performance Results


EEMBC CoreMark


IPv4 Packet Forwarding

Full IPSEC Application

Conclusions

- The 32 Core Cavium OCTEON II 68xx:
 - Up to 96 billion industry-standard 64-bit instructions per second
 - Including a coherent crossbar interconnect and other features delivering scalable generalpurpose processing power
 - Including Power Optimizer technology that maximizes compute capability within a thermal envelope
 - Including integrated coprocessors tuned for networking, security, wireless, and storage