Integrated Inductors (intel) with Magnetic Materials for On-Chip Power Conversion

Donald S. Gardner Collaborators: Gerhard Schrom, Fabrice Paillet, Tanay Karnik, Shekhar Borkar

> Circuits Research Lab & Future Technology Research Intel Labs Intel Corporation

Outline

DC Voltage Converters

- Comparison of buck converters
- Comparison of inductors with magnetic films
- Magnetic material properties
 - Magnetic hysteresis loops
 - Complex permeability spectra
- Inductors
 - Structure cross sections
 - Inductance measurements
 - Eddy current and skin effect
 - Sheet and shunt inductance

Multi-Core Power Management

- Today Coarse Grain Power Management

 same voltage to all the cores, variable voltage
- Future Fine Grain Power Management
 - each core or cluster of cores operates at the optimum voltage

Two-Phase Buck Converter with Coupled Inductors

Fundamentals of Power Electronics by Robert W. Erickson

100~480 MHz Switching Regulator

- High frequency
- Hysteretic multi-phase topology 1ns response
- 88% efficiency

Schrom, Gardner, et.al., IEEE PESC 2004 and IEEE VLSI Symp. 2004.

Comparison of DC Converters

	[3]	[4]	[5]	[6]	[7]	Pavo-1	
Year	1996	1999	2000	2002	2002	2004	
Tech [μm]	n/a	0.25	n/a	0.25	n/a	0.09	
# phases	1	1	1	1	1	4	
<i>V _{IN}</i> [V]	4	3	4	2.5	3.6	1.2	
V _{ουτ} [V]	3.3	2	3	1.4	2.7		100×
f [MHz]	1.6	0.5	3	0.75	1.8	233	higher f
Eff. [%]	85	94	83.3	95	80	83.2	ingrici i
<i>L _{τοτ}</i> [μΗ]	3	10	1	15.2	1 💒	0.0017	1000x
C [μF]	n/a	47	1	21.6	n/a	0.0025	Smalle Cond Cond
Ι _{ΜΑΧ} [A]	0.3	0.25	0.33	0.25	0.3	0.3	
Area [mm ²]	n/a	0.46	20	0.35	n/a	0.14	

Package-Integrated VR with Intel[®] Core[™]2 Duo Processor

- Vin = 3V, Vout = 0~1.6V
- f = 10~100 MHz
- Current = 50 Amps / 75 Amps peak
- Size = 37.6 mm², 130 nm CMOS

Efficiency Measurements

- Package embedded air core inductors: 84.9%
- Discrete powdered Fe core inductors:87.9%
- Load adaptive bridge activation improved by >10%

G. Schrom et. al., APEC, Paper #SP1.4.2, p. 75, 2010

RF CMOS Integrated Circuit

Inductors make up 24% of this chip Inductance density of spirals is small (<100 nH/mm²)

Inductance Densities vs. Q-Factor from the Literature

Gardner, Jamieson, et.al. IEEE Trans. Magnetics, 45, pp. 4760, 2009.

Permeability vs. Applied Magnetic Field

Magnetic anisotropy H_k has two components:

- The intrinsic induced anisotropy from the deposition
- The demagnetizing energy caused by the sample shape

Complex Permeability Model

 δ = skin depth ρ = resistivity of magnetic film ω = frequency μ_i = relative dc permeability d = film thickness

$$\mu = \mu_i \frac{2\delta}{(1+j)d} \tanh \frac{(1+j)d}{2\delta}$$

High resistivity materials are needed to reduce the eddy currents and increase the skin depth.

CoZrTa \rightarrow ρ = 100 μΩ-cm

Inductance Modeling of Wire with Magnetic Material

<u>Maximum Increase in Inductance</u> 1 layer magnetic film → $\leq 2 \times$ 2 layers magnetic film → $\leq \mu_r \times$

Spiral and Transmission Line Inductors

Structures take advantage of the uniaxial magnetic anisotropy.

Cross-Sectional Image of Inductor in 130 nm 6-level Metal CMOS Process

Increase in inductance is small (10~30% at up to 9.8 GHz)

Spiral Inductors with Two Magnetic Layers

Inductance increases by 9 ×

Magnetic Flux Density At 1GHz

Unlaminated Cobalt alloy

Skin-depth effect limits penetration of B-field. Larger skin depth results in lower losses.

Inductance vs. Frequency of Spirals

Spiral and Stripe Inductors Using 5um thick Copper

Structures take advantage of the uniaxial magnetic anisotropy.

Cross-Sectional Image of Inductor in 90 nm CMOS Process

90 nm 7-level Metal CMOS Process

Cross-Sectional Image of Inductor

Stripe Inductors With Thick Copper

Inductance Modeling of Rectangular Line

$$L \approx \mu_0 \mu_r \frac{t_m}{2} \left(\frac{l}{w}\right)$$

l = line length *w* = line width *t_m* = magnetic film thickness *µ_r* = relative dc permeability

Eqn. from V. Korenivski and R. B. van Dover, JAP, v. 82 (10), 1997

Inductance increases with via width, but the change becomes diminishingly small.

Sheet and Shunt Inductances

Sheet inductance is independent of the magnetic via width. Shunt inductance increases with increasing via width.

Current Density At 100 MHz

Eddy currents are reduced by laminations.

Analytical Modeling of Q-Factor

Thinner films give higher Q-factors, but lower inductance.

Analytical Modeling of Q-Factor

Summary

DC Voltage Converters

- High-frequency buck converters
- High inductance density needed
- Low DC resistance important
- Magnetic materials
 - Complex permeability (real and imaginary)
 - Low hysteretic losses
 - CMOS compatibility (thermal, process compatibility)
- Inductors with magnetic material
 - Single films increase inductance by ≤30% up to 9.8 GHz
 - Magnetic vias Sheet inductance vs. shunt inductance
 - 2 magnetic films increase inductance
 - Over 30× compared to air-core
 - 200 nH inductors possible (1,700 nH/mm²)

For More Information

- IEEE Trans. Magnetics, **45**, pp. 4760, 2009.
- Journal of Applied Physics, **103**, pp. 07E927, Apr. 1, 2008.
- IEEE Trans. Magnetics, 43, pp. 2615, 2007.
- IEEE PESC 2004 and IEEE VLSI Symp. 2004.
- APEC, Paper #SP1.4.2, p. 75, 2010.
- Intl. Electron Devices Meeting (IEDM), pp. 221-224, 2006.
- IEEE Intl. Interconnect Technology Conference, pp.101–103, 2001.