

28nm Generation Programmable Families

7 Series FPGAs Extensible Processing Platform Family AMBA AXI4 IP

Brad Taylor Ralph Wittig

August 8, 2010

Agenda

- Xilinx 7 Series 28 nm Families
- Enhanced Power Efficiency
- Enhanced Logic Density
- Enhanced IO Bandwidth
- Extensible Processing Platform
- Advanced Interconnect System

Xilinx 28nm High Performance Low Power Process

28nm process node

- First wave of 28nm HK/MG devices from fabless Si vendors
- >2x device capacity over 40nm devices
- ~50% total power reduction over 40nm devices

Xilinx 28nm High-Performance, Low-Power process

- High-K Metal Gate (HK/MG)
- Developed by Xilinx and TSMC optimized for high performance & low power
- 65% lower static power than 28nm variants offering similar performance

Process	Xilinx 40nm High Performance	28nm Low Power	28nm High Performance	28nm High Performance Low Power
Gate Scheme	SiON/Poly	SiON/Poly	HK/MG	HK/MG
VCC	1V	1.05V	.85V	1V
Static Power	>2.5x	1.5x	2x	1.0x
FPGA Performance*	1.0x	0.9x	1.02x	1.0x

* Estimation of FPGA performance based on Xilinx internal benchmark suite

Xilinx 28nm Total Power Reduction

New for 28nm – 50% Total Power Reduction from 40 nm

- Static Power 65% reduction
 - Xilinx High Performance Low Power Process
- Dynamic Power 25% reduction
 - 40nm => 28nm process shrink
- IO Power 30% reduction
 - VCCAUX voltage reduction from 2.5V to 1.8V
 - High Speed Transceiver power saving features
 - Single Ended IO (DDR3) power saving features
 - Support for 1.2V, 1.35V for memory standards

Activity Based Logic Optimization – 20% reduction

- Available in ISE v12
- Average 20% savings (benchmark results)
- Leverages clock gating built into Logic Slice

Additional Low Power Device Options

- 1L low power .9V speed grades 20% power reduction
- 1) Total Power reduction estimated from Xilinx internal benchmarks (Range 45%-61%)
- 2) Static power reduction for max VCC, 100 DegC, worst case process

Increased Usable

Performance

Xilinx Architecture Evolution

• Unified Architecture Advantages

- Rapid deployment of 28nm devices
- Xilinx IP reuse across all devices
- FPGA tools optimized for Series 7 architecture
- 3 families for optimal power, cost, performance

1st Step Toward Unification

 Virtex-6 and Spartan-6 share compatible 6LUT, DSP48 and IO blocks

Two FPGA Base Families

- Virtex[®] FPGAs: 4 LUT based high performance, high density family
- Spartan[®] FPGAs: 4 LUT based low cost family

Unified FPGA Family Architecture

Series 7 Family	Artix	Kintex	Virtex
	Lowest Power		Highest System
Market	& Cost	Best Price/Performance	Performance
Logic Cells	20K - 355K	30K - 410K	285K - 2,000K
Memory Kbits	720 - 12,060 Kbits	2,340 - 28,620 Kbits	14,760 - 64,800 Kbits
DSP Slices	40 - 700	120-1,540	700 - 3,960
			10.3 Gbps
		6.6 Gbps	13.1 Gbps
Max Transceivers	3.75 Gbps	10.3 Gbps	28.0 Gbps
External Memory			
Performance	800 Mbps	2,133 Mbps	2,133 Mbps
Max Select IO	450	500	1200
		3.3V and below	3.3V and below
Select IO Voltages	3.3V and below	1.8V and below	1.8V and below
Relative Static Power	.5x	1.0x	1.0x
Relative Performance	.65x	1.0x	1.0x

More than Moore

Challenge:

- Frequency scaling is minimal
- Performance gains focused on parallelism (= capacity)
- Moore's Law only doubles capacity
- Solution:
 - New packaging & assembly methodology

Result:

> 2x capacity gains over 40nm devices

Family	Capacity Range
Artix-7	20K – 355K LCs
Kintex-7	30K – 410K LCs
Virtex-7	285K – 2,000K LCs

More than Logic

Family Comparisons: RAM, DSP, I/O BW

High-Speed Transceiver Evolution

Challenge:

- Increase device BW
- No increase in total device power
- XCVR gains from scaling: negligible

Solution:

- Careful circuit design throughout XCVR
- Increased Gbps / XCVR
- More XCVR / Device
- Low power mode for short channels
- Lanes share a PLL vs PLL per lane
- Result:
 - 60% Increased max device BW
 - Device XCVR power unchanged

	GTP	GTX	GTH	GT28
Max Rate (Gbps)	3.75	10.3125	13.1	28
Relative Power (Per GT)	.35x	.7x	1x	-
Max GTs per Device	4	56	72	-

Single Chip 300G Programmable Bridge

Matching ASIC Performance, Bandwidth, and Power

Xilinx Public

Page 10

Kintex-7 Balancing Price/Performance

Challenge

- Cost sensitive mid range market segment
- No compromise in fabric performance

Solution

- Same process as Virtex-7
- ⇒ Same Performance (as Virtex-7)
- Bare die flip chip packages
- \Rightarrow 50% reduced cost (vs Virtex-6)

Trade Offs

- Restricted max die size
- Reduced max XVER rate

	Price-Performance
Logic Cells	30K – 410K
DSP Slices	120 – 1,540
Max. Transceivers	16
Transceivers Performance	6.6Gbps 10.3Gbps
Memory Performance	2133Mbps
Max. SelectIO™	500
Select IO Voltages	3.3V and below 1.8V and below

Industry's Rost

Real World Customer Impact

2x2 LTE Radio

Virtex-6 LX75T

Requirements	Virtex-6 LX75T-FF784	Kintex-7 K70T-FBG676
FPGA Cost	1.0	.5
Sys Performance	368MHz	368MHz
Power	8.7W	4.48W

Kintex-7 Performance Upgradable to 491MHz

2x2 LTE Radio

Kintex-7 XC7K70T

Availability

- Tools available now
- First devices in early 2011
- Solution kits phasing in in late 2011

Xilinx EPP

Hybrid SOC + FPGA creates a new product class

- Unprecedented configuration compared to an SOC
- Unprecedented integration compared to an FPGA
- 28nm based product
- Significant advantages over a discrete uP + an FPGA
 - Cost, power, bandwidth and latency
- Leverages best of ARM and Xilinx Ecosystem
 - Rich ecosystem of OS, Middleware and Tools support for ARM
 - Tools and IP support for Xilinx FPGA
- Today: EPP Overview
- Future: Detailed family charts, performance numbers, etc

EPP: An SOC from Xilinx (Coming from an FPGA company?)

An SOC with an embedded FPGA

- Application level Dual Core ARM A9
- Hard Peripherals
- Cache and Memory
- ASIC-like Cost
- ASIC-like Power
- + 7 Series Programmable Logic

Boots like a Processor Acts like a Processor Really ... is a Processor ... and more

Can you find the FPGA?

EPP: Extensible

(the FPGA value add)

Extensible I/O Interfaces

- Augment the built-in peripheral set
- Pre-designed standard peripherals
- User designed custom peripherals

High BW Real Time Processing

- Video pipelines
- Low latency, real time events

CPU Offload (accelerators)

- Xilinx XtremeDSP functions
- Custom processing functions
- Up to 0.2 T MAC/s, Up to 2.8 T (int16)

CPU Power Offload

~10x power reduction per operation

Hybrid Many Core

- Sea of custom processors in PL*
- OpenCL like machine

Change the program Customize I/O interfaces Add compute accelerators

*PL = Programmable Logic

Page 16

EPP: Processor System

Processor System boots first

- Separate power for PL*
- Peripherals alive before PL configuration

Processor controls PL configuration

- Multiple security levels supported
- Boot in secure or non-secure mode
- Download PL image via network, SD, USB

Multiple AXI interfaces to PL

- Processor System can access IP in PL
- PL IP has access to Processor System peripherals and memory system at full BW

*PL = Programmable Logic

EPP: Programming

Out-of-the-box SW programmable

- No FPGA design expertise required

Standard OS support

- Dual core ARM A9 base platform

Many Sources of SW and HW IP

- Standardized around AMBA-AXI
- Xilinx, ARM libraries
- 3rd Parties

Industry-Leading Tools

- ARM RVDS Suite & Ecosystem
- Open source GNU tools
- Xilinx ISE® Design Suite
- Xilinx Targeted Design Platforms

Lessons Learned

Past Experience (8 Years)	Customer Requests	Xilinx EPP Solution
 MicroBlaze and PowerPC Processor IP and HW Tools FPGA design centric 	 Out-of-box programmable CPU architecture roadmap Open standards Ecosystem Scalable performance 	 Processor-centric approach Software-centric approach ARM[®] processing engine AXI interface standard MicroBlaze continues as soft core solution

ARM®, AMBA[®] are Registered Trademarks of ARM Ltd. PowerPC is a Register Trademark of IBM MicroBlaze® is a Registered Trademark of Xilinx

AMBA AXI

(New interconnect standard for all Xilinx IP)

Open standard from ARM

- Well supported, documented and widely adopted
- Broad set of IP available with AXI interface
- Royalty free on any target technology

High performance interface

- Optimized for frequency, throughput, latency and/or area
- Supports pipelining with optional register slice
- QoS controls

Easy to use

- One family of interfaces to learn
- Supports embedded, DSP, and logic users

Ecosystem

- Partners are embracing Xilinx' move to AXI
- Verification IP available
- Widely adopted in the ASIC world
- New AXI4 interface variants optimal for FPGA
 - Xilinx contributed to specification process

AXI Interconnect Usage

AXI4 interface variants optimized for area and performance

- AXI4: Maximizes data throughput for an interface
- AXI4-Lite: Area efficient implementation, used for control and status
- AXI4-Stream: Easily connect to non-address based peripherals

AXI4 Transaction Examples

AXI4 Base Protocol

- Independent read and write interfaces
- Split transaction
 - Address xfer decoupled from data xfer
- Simple READY/VALID handshake
- Data width from 8 to 1024 bits
- Burst size from 1-256 data beats
- Pipelined operation
 - ID tags on each channel
 - Overlapping transactions (reads/writes)
 - Out-of-order completion (reads)
 - Interleaving of data beats (reads)

AXI4-Lite

- Single Transaction only (no burst)

AXI4-Stream

- Write Data Channel only

READY/VALID Handshake

AXI4

Streaming AXI

AXI Interconnect IP

(designed by Xilinx, optimized for FPGA)

Crossbar

- Up to 16 masters and 16 slaves per interconnect
- Cascadeable (multi layer switches)
- Independent write and read address arbitration
- Sparse crossbar data path between configured endpoints

Data width, protocol and clock conversion

- 32 to 1024 bit data width (256 bit max at launch)
- Built-in AXI4-Lite and AXI3 protocol conversion
- Asynchronous and integer-ratio clock conversion

Built-in buffering

- Pipeline registers per channel to boost frequency
- Data FIFOs per endpoint for "bursty" throughput
- Multiple threads (transaction IDs)
 - Read data reordering and interleaving between threads
 - Reduces stalling

- Integer-Ratio Clock Bridge
- Asynchronous Clock Bridge

Summary

Unified device architecture for all 7 Series FPGAs

- Scalable platform with three families: cost, power, performance
- 50% total power reduction
- Increased capacity and bandwidth

Xilinx EPP: SOC with embedded programmable logic array

- Boots like a processor
- SW centric programming model
- Extensible peripheral set and compute

All Xilinx IP (soft and hard) use AMBA AXI interconnect

- High performance, scalable interconnect
- AXI4 is optimized for FPGAs
- Memory mapped and streaming interfaces

Availability

- IP with AXI interface: Sept 2010
- 7 Series FPGAs: First devices in early 2011
- EPP: To Be Announced

References

Xilinx 28 nm HPL technology

- http://www.xilinx.com/support/documentation/white_papers/wp312_Next_Gen_28_nm_Overview.pdf

Xilinx Series 7 FPGA Families

- <u>http://www.xilinx.com/technology/roadmap/7-series-fpgas.htm</u>
- Series 7 Press Backgrounder

Xilinx Extensible Processing Platform

- http://www.xilinx.com/technology/roadmap/processing-platform.htm
- http://www.xilinx.com/publications/archives/xcell/issue71/cover-story.pdf

AMBA-AXI

- http://www.arm.com/products/system-ip/amba/amba-open-specifications.php

