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We've Hit The Utilization Wall
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Utilization Wall:

With each successive process generation, the percentage 
of a chip that can actively switch drops exponentially due 
to power constraints.
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We've Hit The Utilization Wall

 Scaling theory
– Transistor and power budgets 

are no longer balanced

– Exponentially increasing 
problem!

 Experimental results
– Replicated a small datapath

– More "dark silicon" than active

 Observations in the wild
– Flat frequency curve

– "Turbo Mode"

– Increasing cache/processor ratio

Utilization Wall: With each successive process generation, the percentage of 
a chip that can actively switch drops exponentially due to power constraints.
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Classical scaling
Device count S2

Device frequency S

Device power (cap) 1/S

Device power (Vdd) 1/S2

Utilization 1

Leakage-limited scaling
Device count  S2

Device frequency S

Device power (cap) 1/S

Device power (Vdd)~1

Utilization 1/S2
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We've Hit The Utilization Wall
Utilization Wall: With each successive process generation, the percentage of 
a chip that can actively switch drops exponentially due to power constraints.
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The utilization wall will change the way
everyone builds processors.
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Utilization Wall: 

Dark Implications for Multicore

4 cores @ 1.8 GHz

4 cores @ 2x1.8 GHz
(12 cores dark)

2x4 cores @ 1.8 GHz
(8 cores dark, 8 dim)

(Industry’s Choice)

.…

65 nm 32 nm

.…

.…Spectrum of tradeoffs
between # of cores and 
frequency

Example:
65 nm  32 nm (S = 2)  



What do we do with

dark silicon?
 Goal: Leverage dark silicon to scale the utilization wall

 Insights:
– Power is now more expensive than area

– Specialized logic can improve energy efficiency (10–1000x)

 Our approach:
– Fill dark silicon with specialized cores to save energy on 

common applications

– Provide focused reconfigurability to handle evolving workloads

1010



11

Conservation Cores

 Specialized circuits for
reducing energy
– Automatically generated from hot 

regions of program source code

– Patching support future-proofs the 
hardware

 Fully-automated toolchain
– Drop-in replacements for code

– Hot code implemented by c-cores, 
cold code runs on host CPU

– HW generation/SW integration

 Energy-efficient
– Up to 18x for targeted hot code

D-cache

Host
CPU

(general-purpose
processor)

I-cache

Hot code

Cold code

"Conservation Cores: Reducing the Energy of Mature Computations," Venkatesh et al.,

ASPLOS '10

C-core
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The C-core Life Cycle
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Outline

 Utilization wall and dark silicon

 GreenDroid

 Conservation cores

 GreenDroid energy savings

 Conclusions



Emerging Trends

Mobile application processors are becoming a dominant 
computing platform for end users.

The utilization wall is exponentially worsening the 
dark silicon problem.
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Specialized architectures are receiving more and more 
attention because of energy efficiency.
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Mobile Application Processors 

Face the Utilization Wall
 The evolution of mobile application processors mirrors

that of microprocessors

 Application processors
face the utilization wall

– Growing performance
demands

– Extreme power
constraints

1985 1990 1995 2000 2005 2010 2015

Intel

ARM
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pipelining
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out-of-order
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Cortex-A9

Cortex-A9
MPCore



Hardware

Linux Kernel

Libraries Dalvik

Applications

Android™

 Google’s OS + app. environment for mobile devices

 Java applications run on the 
Dalvik virtual machine

 Apps share a set of libraries
(libc, OpenGL, SQLite, etc.)
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Applying C-cores to 

Android

 Android is well-suited for c-cores

– Core set of commonly used applications

– Libraries are hot code

– Dalvik virtual machine is hot code

– Libraries, Dalvik, and kernel &
application hotspots  c-cores

– Relatively short hardware
replacement cycle

17

Hardware

Linux Kernel

Libraries Dalvik

Applications

C-cores



Targeted

Broad-based

 Profiled common Android apps to find the hot spots, including:

– Google: Browser, Gallery, Mail, Maps, Music, Video

– Pandora

– Photoshop Mobile

– Robo Defense game

 Broad-based c-cores

– 72% code sharing

 Targeted c-cores

– 95% coverage with just
43,000 static instructions
(approx. 7 mm2)

18

Android Workload Profile
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GreenDroid: Applying Massive Specialization 

to Mobile Application Processors

Android
workload

Automatic
c-core
generator

Conservation cores
(c-cores)

Low-power 
tiled multicore 
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GreenDroid Tiled Architecture

 Tiled lattice of 16 cores

 Each tile contains

– 6-10 Android c-cores
(~125 total)

– 32 KB D-cache
(shared with CPU)

– MIPS processor

• 32 bit, in-order,
7-stage pipeline

• 16 KB I-cache

• Single-precision FPU

– On-chip network router
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GreenDroid Tile Floorplan

 1.0 mm2 per tile

 50% C-cores

 25% D-cache

 25% MIPS core, 
I-cache, and 
on-chip network
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GreenDroid Tile Skeleton

 45 nm process

 1.5 GHz

 ~30k instances

 Blank space is filled with
a collection of c-cores

 Each tile contains
different c-cores

22
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Outline

 Utilization wall and dark silicon

 GreenDroid

 Conservation cores

 GreenDroid energy savings

 Conclusions
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Constructing a C-core

 C-cores start with source code

– Can be irregular, integer programs

– Parallelism-agnostic

 Supports almost all of C:

– Complex control flow
e.g., goto, switch, function calls

– Arbitrary memory structures
e.g., pointers, structs, stack, heap

– Arbitrary operators
e.g., floating point, divide

– Memory coherent with host CPU

sumArray(int *a, int n)

{

int i = 0;

int sum = 0;

for (i = 0; i < n; i++) {

sum += a[i];

}

return sum;

}



25

Constructing a C-core

 Compilation

– C-core selection

– SSA, infinite register,
3-address code

– Direct mapping from
CFG and DFG

– Scan chain insertion

 Verilog  Place & Route
– 45 nm process

– Synopsys CAD flow
• Synthesis

• Placement

• Clock tree generation

• Routing

0.01 mm2, 1.4 GHz



C-cores Experimental Data

 We automatically built 21 c-cores for 9 "hard" 
applications

– 45 nm TSMC

– Vary in size from
0.10 to 0.25 mm2

– Frequencies from
1.0 to 1.4 GHz
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Application #
C-cores

Area
(mm2)

Frequency
(MHz)

bzip2 1 0.18 1235

cjpeg 3 0.18 1451

djpeg 3 0.21 1460

mcf 3 0.17 1407

radix 1 0.10 1364

sat solver 2 0.20 1275

twolf 6 0.25 1426

viterbi 1 0.12 1264

vpr 1 0.24 1074
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C-core Energy Efficiency:

Non-cache Operations
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 Up to 18x more energy-efficient (13.7x on average),
compared to running on the MIPS processor



D-cache
6%

Datapath
3%

Energy
Saved
91%

D-cache
6%

Datapath
38%

Reg. File
14%

Fetch/
Decode

19%

I-cache
23%

Where do the energy savings 

come from?
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MIPS baseline
91 pJ/instr.

C-cores
8 pJ/instr.



Supporting Software Changes

 Software may change – HW must remain usable
– C-cores unaffected by changes to cold regions

 Can support any changes, through patching
– Arbitrary insertion of code – software exception 

mechanism

– Changes to program constants – configurable registers

– Changes to operators – configurable functional units

 Software exception mechanism
– Scan in values from c-core

– Execute in processor

– Scan out values back to c-core to resume execution

29
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Patchability Payoff: Longevity

 Graceful degradation

– Lower initial efficiency

– Much longer useful lifetime

 Increased viability

– With patching, utility
lasts ~10 years for
4 out of 5 applications

– Decreases risks of 
specialization
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Outline

 Utilization wall and dark silicon

 GreenDroid

 Conservation cores

 GreenDroid energy savings

 Conclusions



GreenDroid:

Energy per Instruction
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 More area dedicated to c-cores yields higher execution 
coverage and lower energy per instruction (EPI)

 7 mm2 of c-cores provides:
– 95% execution coverage

– 8x energy savings over MIPS core
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What kinds of hotspots turn into 

GreenDroid c-cores?

33

C-core Library # 
Apps

Coverage 
(est., %)

Area
(est., mm2)

Broad-
based

dvmInterpretStd libdvm 8 10.8 0.414 Y

scanObject libdvm 8 3.6 0.061 Y

S32A_D565_Opaque_Dither libskia 8 2.8 0.014 Y

src_aligned libc 8 2.3 0.005 Y

S32_opaque_D32_filter_DXDY libskia 1 2.2 0.013 N

less_than_32_left libc 7 1.7 0.013 Y

cached_aligned32 libc 9 1.5 0.004 Y

.plt <many> 8 1.4 0.043 Y

memcpy libc 8 1.2 0.003 Y

S32A_Opaque_BlitRow32 libskia 7 1.2 0.005 Y

ClampX_ClampY_filter_affine libskia 4 1.1 0.015 Y

DiagonalInterpMC libomx 1 1.1 0.054 N

blitRect libskia 1 1.1 0.008 N

calc_sbr_synfilterbank_LC libomx 1 1.1 0.034 N

inflate libz 4 0.9 0.055 Y

. . . . . . . . . . . . . . . . . .



GreenDroid: Projected Energy

Aggressive mobile application processor

(45 nm, 1.5 GHz)

GreenDroid c-cores

GreenDroid c-cores + cold code (est.)

 GreenDroid c-cores use 11x less energy per instruction 
than an aggressive mobile application processor

 Including cold code, GreenDroid will still save ~7.5x energy
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91  pJ/instr.

8  pJ/instr.

12  pJ/instr.



Project Status

 Completed

– Automatic generation of c-cores from source code to place & route

– Cycle- and energy-accurate simulation (post place & route)

– Tiled lattice, placed and routed

– FPGA emulation of Android-based c-cores and tiled lattice

 Ongoing work

– Finish full system Android emulation for more accurate
workload modeling

– Finalize c-core selection based on full system Android
workload model

– Timing closure and tapeout

35
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GreenDroid Conclusions

 The utilization wall forces us to change how we 
build hardware

 Conservation cores use dark silicon to attack
the utilization wall

 GreenDroid will demonstrate the benefits of c-cores 
for mobile application processors

 We are developing a 45 nm tiled prototype at UCSD
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Backup Slides
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Automated Measurement 

Methodology
 C-core toolchain

– Specification generator

– Verilog generator

 Synopsys CAD flow
– Design Compiler

– IC Compiler

– 45 nm library

 Simulation
– Validated cycle-accurate 

c-core modules

– Post-route gate-level 
simulation

 Power measurement
– VCS + PrimeTime

Source

Rewriter

gcc

C-core 
specification

generator

Verilog
generator

Synopsys flow
Simulation

Power
measurement

Hot code

Hotspot analyzer

Cold code


