
GreenDroid: A Mobile
Application Processor
for a Future of Dark Silicon

Nathan Goulding, Jack Sampson, Ganesh Venkatesh,
Saturnino Garcia, Joe Auricchio, Jonathan Babb+,

Michael B. Taylor, and Steven Swanson

Department of Computer Science and Engineering,

University of California, San Diego

+ CSAIL, Massachusetts Institute of Technology

Aug. 23, 2010Hot Chips 22

We've Hit The Utilization Wall

2

Utilization Wall:

With each successive process generation, the percentage
of a chip that can actively switch drops exponentially due
to power constraints.

3

We've Hit The Utilization Wall

 Scaling theory
– Transistor and power budgets

are no longer balanced

– Exponentially increasing
problem!

 Experimental results
– Replicated a small datapath

– More "dark silicon" than active

 Observations in the wild
– Flat frequency curve

– "Turbo Mode"

– Increasing cache/processor ratio

Utilization Wall: With each successive process generation, the percentage of
a chip that can actively switch drops exponentially due to power constraints.

4

Classical scaling
Device count S2

Device frequency S

Device power (cap) 1/S

Device power (Vdd) 1/S2

Utilization 1

Leakage-limited scaling
Device count S2

Device frequency S

Device power (cap) 1/S

Device power (Vdd)~1

Utilization 1/S2

We've Hit The Utilization Wall

 Scaling theory
– Transistor and power budgets

are no longer balanced

– Exponentially increasing
problem!

 Experimental results
– Replicated a small datapath

– More "dark silicon" than active

 Observations in the wild
– Flat frequency curve

– "Turbo Mode"

– Increasing cache/processor ratio

Utilization Wall: With each successive process generation, the percentage of
a chip that can actively switch drops exponentially due to power constraints.

5

We've Hit The Utilization Wall

 Scaling theory
– Transistor and power budgets

are no longer balanced

– Exponentially increasing
problem!

 Experimental results
– Replicated a small datapath

– More "dark silicon" than active

 Observations in the wild
– Flat frequency curve

– "Turbo Mode"

– Increasing cache/processor ratio

Expected utilization for fixed area

and power budget

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

90 nm 65 nm 45 nm 32 nm

2x

2x

2x

Utilization Wall: With each successive process generation, the percentage of
a chip that can actively switch drops exponentially due to power constraints.

6

We've Hit The Utilization Wall

 Scaling theory
– Transistor and power budgets

are no longer balanced

– Exponentially increasing
problem!

 Experimental results
– Replicated a small datapath

– More "dark silicon" than active

 Observations in the wild
– Flat frequency curve

– "Turbo Mode"

– Increasing cache/processor ratio

Utilization @ 40 mm2, 3 W

0.9%

1.8%

5.0%

0.00

0.01

0.02

0.03

0.04

0.05

0.06

 90 nm

TSMC

 45 nm

TSMC

 32 nm

ITRS

2.8x

2x

Utilization Wall: With each successive process generation, the percentage of
a chip that can actively switch drops exponentially due to power constraints.

7

We've Hit The Utilization Wall

 Scaling theory
– Transistor and power budgets

are no longer balanced

– Exponentially increasing
problem!

 Experimental results
– Replicated a small datapath

– More "dark silicon" than active

 Observations in the wild
– Flat frequency curve

– "Turbo Mode"

– Increasing cache/processor ratio

Utilization Wall: With each successive process generation, the percentage of
a chip that can actively switch drops exponentially due to power constraints.

Utilization @ 40 mm2, 3 W

0.9%

1.8%

5.0%

0.00

0.01

0.02

0.03

0.04

0.05

0.06

 90 nm

TSMC

 45 nm

TSMC

 32 nm

ITRS

2.8x

2x

 Scaling theory
– Transistor and power budgets

are no longer balanced

– Exponentially increasing
problem!

 Experimental results
– Replicated a small datapath

– More "dark silicon" than active

 Observations in the wild
– Flat frequency curve

– "Turbo Mode"

– Increasing cache/processor ratio
8

We've Hit The Utilization Wall
Utilization Wall: With each successive process generation, the percentage of
a chip that can actively switch drops exponentially due to power constraints.

Utilization @ 40 mm2, 3 W

0.9%

1.8%

5.0%

0.00

0.01

0.02

0.03

0.04

0.05

0.06

 90 nm

TSMC

 45 nm

TSMC

 32 nm

ITRS

2.8x

2x

The utilization wall will change the way
everyone builds processors.

99

Utilization Wall:

Dark Implications for Multicore

4 cores @ 1.8 GHz

4 cores @ 2x1.8 GHz
(12 cores dark)

2x4 cores @ 1.8 GHz
(8 cores dark, 8 dim)

(Industry’s Choice)

.…

65 nm 32 nm

.…

.…Spectrum of tradeoffs
between # of cores and
frequency

Example:
65 nm  32 nm (S = 2)

What do we do with

dark silicon?
 Goal: Leverage dark silicon to scale the utilization wall

 Insights:
– Power is now more expensive than area

– Specialized logic can improve energy efficiency (10–1000x)

 Our approach:
– Fill dark silicon with specialized cores to save energy on

common applications

– Provide focused reconfigurability to handle evolving workloads

1010

11

Conservation Cores

 Specialized circuits for
reducing energy
– Automatically generated from hot

regions of program source code

– Patching support future-proofs the
hardware

 Fully-automated toolchain
– Drop-in replacements for code

– Hot code implemented by c-cores,
cold code runs on host CPU

– HW generation/SW integration

 Energy-efficient
– Up to 18x for targeted hot code

D-cache

Host
CPU

(general-purpose
processor)

I-cache

Hot code

Cold code

"Conservation Cores: Reducing the Energy of Mature Computations," Venkatesh et al.,

ASPLOS '10

C-core

12

The C-core Life Cycle

13

Outline

 Utilization wall and dark silicon

 GreenDroid

 Conservation cores

 GreenDroid energy savings

 Conclusions

Emerging Trends

Mobile application processors are becoming a dominant
computing platform for end users.

The utilization wall is exponentially worsening the
dark silicon problem.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1Q'07 1Q'08 1Q'09 1Q'10 1Q'11

Dell

Android iPhone

Historical Data: Gartner

1Q Shipments,
Thousands

Specialized architectures are receiving more and more
attention because of energy efficiency.

14

Mobile Application Processors

Face the Utilization Wall
 The evolution of mobile application processors mirrors

that of microprocessors

 Application processors
face the utilization wall

– Growing performance
demands

– Extreme power
constraints

1985 1990 1995 2000 2005 2010 2015

Intel

ARM

15

pipelining

superscalar

out-of-order

multicore

StrongARM

Core Duo

486

586

686

Cortex-A8

Cortex-A9

Cortex-A9
MPCore

Hardware

Linux Kernel

Libraries Dalvik

Applications

Android™

 Google’s OS + app. environment for mobile devices

 Java applications run on the
Dalvik virtual machine

 Apps share a set of libraries
(libc, OpenGL, SQLite, etc.)

16

Applying C-cores to

Android

 Android is well-suited for c-cores

– Core set of commonly used applications

– Libraries are hot code

– Dalvik virtual machine is hot code

– Libraries, Dalvik, and kernel &
application hotspots  c-cores

– Relatively short hardware
replacement cycle

17

Hardware

Linux Kernel

Libraries Dalvik

Applications

C-cores

Targeted

Broad-based

 Profiled common Android apps to find the hot spots, including:

– Google: Browser, Gallery, Mail, Maps, Music, Video

– Pandora

– Photoshop Mobile

– Robo Defense game

 Broad-based c-cores

– 72% code sharing

 Targeted c-cores

– 95% coverage with just
43,000 static instructions
(approx. 7 mm2)

18

Android Workload Profile

C
P

U

L1 L1

L1 L1

C
P

U

C
P

U
C

P
U

C
P

U

L1 L1

L1 L1

C
P

U

C
P

U
C

P
U

C
P

U

L1 L1

L1 L1

C
P

U

C
P

U
C

P
U

C
P

U

L1 L1

L1 L1

C
P

U

C
P

U
C

P
U

GreenDroid: Applying Massive Specialization

to Mobile Application Processors

Android
workload

Automatic
c-core
generator

Conservation cores
(c-cores)

Low-power
tiled multicore

lattice 19

GreenDroid Tiled Architecture

 Tiled lattice of 16 cores

 Each tile contains

– 6-10 Android c-cores
(~125 total)

– 32 KB D-cache
(shared with CPU)

– MIPS processor

• 32 bit, in-order,
7-stage pipeline

• 16 KB I-cache

• Single-precision FPU

– On-chip network router

C
P

U

L1 L1

L1 L1

C
P

U

C
P

U
C

P
U

C
P

U

L1 L1

L1 L1

C
P

U

C
P

U
C

P
U

C
P

U

L1 L1

L1 L1
C

P
U

C
P

U
C

P
U

C
P

U

L1 L1

L1 L1

C
P

U

C
P

U
C

P
U

20

GreenDroid Tile Floorplan

 1.0 mm2 per tile

 50% C-cores

 25% D-cache

 25% MIPS core,
I-cache, and
on-chip network

1 mm

1 mm

OCN

D $

C
P

U

I $

C C
C

C

C

C

C

C

C C

21

GreenDroid Tile Skeleton

 45 nm process

 1.5 GHz

 ~30k instances

 Blank space is filled with
a collection of c-cores

 Each tile contains
different c-cores

22

OCN

D $

C
P

U

I $

C-cores

23

Outline

 Utilization wall and dark silicon

 GreenDroid

 Conservation cores

 GreenDroid energy savings

 Conclusions

24

Constructing a C-core

 C-cores start with source code

– Can be irregular, integer programs

– Parallelism-agnostic

 Supports almost all of C:

– Complex control flow
e.g., goto, switch, function calls

– Arbitrary memory structures
e.g., pointers, structs, stack, heap

– Arbitrary operators
e.g., floating point, divide

– Memory coherent with host CPU

sumArray(int *a, int n)

{

int i = 0;

int sum = 0;

for (i = 0; i < n; i++) {

sum += a[i];

}

return sum;

}

25

Constructing a C-core

 Compilation

– C-core selection

– SSA, infinite register,
3-address code

– Direct mapping from
CFG and DFG

– Scan chain insertion

 Verilog  Place & Route
– 45 nm process

– Synopsys CAD flow
• Synthesis

• Placement

• Clock tree generation

• Routing

0.01 mm2, 1.4 GHz

C-cores Experimental Data

 We automatically built 21 c-cores for 9 "hard"
applications

– 45 nm TSMC

– Vary in size from
0.10 to 0.25 mm2

– Frequencies from
1.0 to 1.4 GHz

26

Application #
C-cores

Area
(mm2)

Frequency
(MHz)

bzip2 1 0.18 1235

cjpeg 3 0.18 1451

djpeg 3 0.21 1460

mcf 3 0.17 1407

radix 1 0.10 1364

sat solver 2 0.20 1275

twolf 6 0.25 1426

viterbi 1 0.12 1264

vpr 1 0.24 1074

27

C-core Energy Efficiency:

Non-cache Operations

0

2

4

6

8

10

12

14

16

18

20

bzip2 cjpeg djpeg mcf radix sat twolf viterbi vpr Avg.

P
e

r-
fu

n
c

ti
o

n
 e

ff
ic

ie
n

c
y

 (
w

o
rk

/J
) Software

C-cores

 Up to 18x more energy-efficient (13.7x on average),
compared to running on the MIPS processor

D-cache
6%

Datapath
3%

Energy
Saved
91%

D-cache
6%

Datapath
38%

Reg. File
14%

Fetch/
Decode

19%

I-cache
23%

Where do the energy savings

come from?

28

MIPS baseline
91 pJ/instr.

C-cores
8 pJ/instr.

Supporting Software Changes

 Software may change – HW must remain usable
– C-cores unaffected by changes to cold regions

 Can support any changes, through patching
– Arbitrary insertion of code – software exception

mechanism

– Changes to program constants – configurable registers

– Changes to operators – configurable functional units

 Software exception mechanism
– Scan in values from c-core

– Execute in processor

– Scan out values back to c-core to resume execution

29

30

Patchability Payoff: Longevity

 Graceful degradation

– Lower initial efficiency

– Much longer useful lifetime

 Increased viability

– With patching, utility
lasts ~10 years for
4 out of 5 applications

– Decreases risks of
specialization

31

Outline

 Utilization wall and dark silicon

 GreenDroid

 Conservation cores

 GreenDroid energy savings

 Conclusions

GreenDroid:

Energy per Instruction

32

 More area dedicated to c-cores yields higher execution
coverage and lower energy per instruction (EPI)

 7 mm2 of c-cores provides:
– 95% execution coverage

– 8x energy savings over MIPS core

0
10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9

A
v
e
ra

g
e
 E

n
e
rg

y
 p

e
r

In
s
tr

u
c
ti

o
n

 (
p

J
)

C-core Area (mm2)

What kinds of hotspots turn into

GreenDroid c-cores?

33

C-core Library #
Apps

Coverage
(est., %)

Area
(est., mm2)

Broad-
based

dvmInterpretStd libdvm 8 10.8 0.414 Y

scanObject libdvm 8 3.6 0.061 Y

S32A_D565_Opaque_Dither libskia 8 2.8 0.014 Y

src_aligned libc 8 2.3 0.005 Y

S32_opaque_D32_filter_DXDY libskia 1 2.2 0.013 N

less_than_32_left libc 7 1.7 0.013 Y

cached_aligned32 libc 9 1.5 0.004 Y

.plt <many> 8 1.4 0.043 Y

memcpy libc 8 1.2 0.003 Y

S32A_Opaque_BlitRow32 libskia 7 1.2 0.005 Y

ClampX_ClampY_filter_affine libskia 4 1.1 0.015 Y

DiagonalInterpMC libomx 1 1.1 0.054 N

blitRect libskia 1 1.1 0.008 N

calc_sbr_synfilterbank_LC libomx 1 1.1 0.034 N

inflate libz 4 0.9 0.055 Y

.

GreenDroid: Projected Energy

Aggressive mobile application processor

(45 nm, 1.5 GHz)

GreenDroid c-cores

GreenDroid c-cores + cold code (est.)

 GreenDroid c-cores use 11x less energy per instruction
than an aggressive mobile application processor

 Including cold code, GreenDroid will still save ~7.5x energy

34

91 pJ/instr.

8 pJ/instr.

12 pJ/instr.

Project Status

 Completed

– Automatic generation of c-cores from source code to place & route

– Cycle- and energy-accurate simulation (post place & route)

– Tiled lattice, placed and routed

– FPGA emulation of Android-based c-cores and tiled lattice

 Ongoing work

– Finish full system Android emulation for more accurate
workload modeling

– Finalize c-core selection based on full system Android
workload model

– Timing closure and tapeout

35

36

GreenDroid Conclusions

 The utilization wall forces us to change how we
build hardware

 Conservation cores use dark silicon to attack
the utilization wall

 GreenDroid will demonstrate the benefits of c-cores
for mobile application processors

 We are developing a 45 nm tiled prototype at UCSD

GreenDroid: A Mobile
Application Processor
for a Future of Dark Silicon

Nathan Goulding, Jack Sampson, Ganesh Venkatesh,
Saturnino Garcia, Joe Auricchio, Jonathan Babb+,

Michael B. Taylor, and Steven Swanson

Department of Computer Science and Engineering,

University of California, San Diego

+ CSAIL, Massachusetts Institute of Technology

Aug. 23, 2010Hot Chips 22

Backup Slides

38

39

Automated Measurement

Methodology
 C-core toolchain

– Specification generator

– Verilog generator

 Synopsys CAD flow
– Design Compiler

– IC Compiler

– 45 nm library

 Simulation
– Validated cycle-accurate

c-core modules

– Post-route gate-level
simulation

 Power measurement
– VCS + PrimeTime

Source

Rewriter

gcc

C-core
specification

generator

Verilog
generator

Synopsys flow
Simulation

Power
measurement

Hot code

Hotspot analyzer

Cold code

