
Surviving the End of Scaling of 

Traditional Micro Processors in HPC

Olav Lindtjørn (Schlumberger, Stanford), Robert G. Clapp 

(Stanford), Oliver Pell, Oskar Mencer, 

Michael J Flynn (Maxeler)



2/20

The Memory Wall and the Power Wall

• Moore’s Law continues to deliver double the 
transistors on a chip every 18-24 months

– But we are having trouble making those extra 
transistors deliver performance. 

• Memory Wall

– Parallel processing elements on-chip must share the 
same off-chip bandwidth

• Power Wall

– Chips still need to be cooled in the same physical 
space



CPUs vs. FPGA   Processing

Streaming Data through a data flow machine



• Oil and Gas HPC applications

• Maxeler FPGA Compiler and Accelerators 

• Key Computational Kernels in Oil&Gas

– Sparse Matrix

– Convolution based methods 

• Applications scalability – Technology trends

• Conclusions

Outline



HPC – Its role in Oil & Gas exploration

• Identify 

resources

• Access 

resources

• Maximize 

recovery

Courtesy of Statoil



Where to Drill
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Data Intensity and Complex Physics

Isotropic Anisotropic
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20 – 25,000 sensors

500 MB – 2 GB

50 – 200,000 shots

50 – 200 TB  Data

1000s node

5 – 7 days

15 -20,000  nodes

Days - weeks
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Cost of Imaging Algorithms

FWI-Elastic

Imaging Complexity
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HPC – Its role in Hydrocarbon exploration

• Identify resources

• Access resources

Geomechanics



HPC – Its role in Hydrocarbon exploration

• Identify 

resources

• Access 

resources

• Maximize 

recovery

Geomechanics

Reservoir Flow Simulation



Oil and Gas Computational Kernels

Wave propagation

Diffusion

Fluid Flow
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Oil and Gas Computational Kernels
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• Oil and Gas HPC applications

• Maxeler FPGA Compiler and Accelerators 

• Key Computational Kernels in Geophysics

– Sparse Matrix

– Convolution based methods 

• Applications scalability – Technology trends

• Conclusions
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Accelerating

Convolution and Sparse Matrix

in the 

Maxeler Environment



Maxeler Accelerators

• Commodity silicon 

chips configurable to 

implement any digital 

circuit

– ~106 small processing 

elements that operate 

in parallel

– Several megabytes of 

on-chip memory

– Run at several hundred 

megahertz

– Support large on-board 

memory (24GB+) 



MaxNode with MAX3

Compute 8x 2.8GHz Nahelem Cores
4x Virtex 6-SX475T FPGAs

Interconnect PCI-Express Gen. 2
MaxRing
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Storage 3x 2TB Hard disks
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MAX3 System Bandwidths
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Maxeler Programming Paradigm



Sparse Matrix Format

Structured                                                            Unstructured



Typical scalability of SLB Sparse Matrix Applications

Visage – Geomechanics
(2 node Nehalem 2.93 GHz)

Eclipse Benchmark
(2 node Westmere 3.06 GHz)
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Sparse Matrix on FPGAs

624

624

• 4 MB BLK RAM

• Pipelining

• Addressing scheme 
optimized for Matrix 
structure

• Domain Specific Data 
Encoding



Sparse Matrix on FPGAs
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Sparse Matrix on FPGAs
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3D Convolution

800 -1200
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• Low Flop/Byte ratio

• Sparse structure requires large 

streaming memory buffers 

(14×nx×ny for 14th order in space).

• Data Structure >> Data Caches

x
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• CPUs:

• Constrained by:

• Small L1/L2 cache

• Limited utilization of pipeline

• Limited by Streaming BW

• Limited data element reuse

•  Fraction of peak performance



FPGA Opportunities
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• FPGA opportunities

• 4 MB on-chip Memory

• Hundreds of pipeline stages

• Optimal trade off between streams 

for BW utilization and Pipe line depth
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• CPU limits:

• Constrained by:

• Small L1/L2 cache

• Limited depth of pipeline

• Limited by Streaming BW

• Limited data element reuse

•  Fraction of peak performance



Performance

Algorithm Hardware Design Speedup
8-core Nehalem 2.93 GHz 
1U server vs 1U MaxNode

Star
stencil

VIRTEX 5 3 pipe 20x

Star
stencil

VIRTEX 6 9 pipe 73x
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• Transistor count keeps increasing

• Memory BW continues  to trail

• How will our algorithms scale?

• Convolution:

– Deeper pipelines:

• An example: Cascading multiple time steps

– Specialized macros on FPGAs

Application scalability and Technology 

trends



FPGA: Time step Cascading
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FPGA: Time step Cascading
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FPGA: Time step Cascading
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FPGA: Time step Cascading
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FPGA: Time step Cascading
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Technology opportunities
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Memory

Transistor scaling

LUT/FFs DSPs

MaxGenFD on Virtex-5 207 8

MaxGenFD on Virtex-6 33 8

Resulting perf. improvement 50 %

Resource costs for a symmetric 15-point stencil:

Virtex-6 DSP enhanced with Pre-Adder

• Added Resources (Transistor 

scaling ) translates directly into 

performance using Multiple 

time step techniques

• Independent of Memory BW  

increase  
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Surviving the End of Scaling of 

Traditional Micro Processors in HPC
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• Conclusions:

• FPGA Streaming has come of age

• Development Environment is here 
today

• Application will scale with predicted 
technology evolution

• Considerable upside for “smart 
macros”

Conventional Road Map
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• Conclusions:

• FPGA Streaming has come of age

• Development Environment is here 
today

• Application will scale with predicted 
technology evolution

• Considerable upside for “smart 
macros”

FPGA road maps
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