Surviving the End of Scaling of Traditional Micro Processors in HPC

Olav Lindtjørn (Schlumberger, Stanford), Robert G. Clapp (Stanford), Oliver Pell, Oskar Mencer, Michael J Flynn (Maxeler)

The Memory Wall and the Power Wall

- Moore's Law continues to deliver double the transistors on a chip every 18-24 months
 - But we are having trouble making those extra transistors deliver performance.
- Memory Wall
 - Parallel processing elements on-chip must share the same off-chip bandwidth
- Power Wall
 - Chips still need to be cooled in the same physical space

CPUs vs. FPGA Processing

Streaming Data through a data flow machine

Outline

- Oil and Gas HPC applications
- Maxeler FPGA Compiler and Accelerators
- Key Computational Kernels in Oil&Gas
 - Sparse Matrix
 - Convolution based methods
- Applications scalability Technology trends
- Conclusions

HPC – Its role in Oil & Gas exploration

- Identify resources
- Access resources
- Maximize recovery

Courtesy of Statoil

Where to Drill

Seismic – Acoustic measurement

Electromagnetic Gravity

Data Intensity and Complex Physics

Isotropic

Anisotropic

Data Rates and Computational needs

Data Rates and Computational needs

Cost of Imaging Algorithms

HPC – Its role in Hydrocarbon exploration

- Identify resources
- Access resources

HPC – Its role in Hydrocarbon exploration

Oil and Gas Computational Kernels

Oil and Gas Computational Kernels

Oil and Gas Computational Kernels

Outline

• Oil and Gas HPC applications

- Maxeler FPGA Compiler and Accelerators
- Key Computational Kernels in Geophysics
 - Sparse Matrix
 - Convolution based methods
- Applications scalability Technology trends
- Conclusions

Accelerating Convolution and Sparse Matrix in the Maxeler Environment

Maxeler Accelerators

- Commodity silicon chips configurable to implement any digital circuit
 - ~10⁶ small processing elements that operate in parallel
 - Several megabytes of on-chip memory
 - Run at several hundred megahertz
 - Support large on-board memory (24GB+)

MaxNode with MAX3

Specifications:

Compute	8x 2.8GHz Nahelem Cores 4x Virtex 6-SX475T FPGAs	
Interconnect	PCI-Express Gen. 2	
	Gigabit Ethernet	
Storage	3x 2TB Hard disks	
Memory	96GB DRAM	
Form Factor	1U	

MAX3 System Bandwidths

Maxeler Programming Paradigm

public class MovingAverageKernel extends Kernel {

```
public MovingAverageKernel(KernelParameters parameters, int N) {
    super(parameters);
```

```
// Input
HWVar x = io.input("x", hwFloat(8, 24));
// Data
HWVar prev = stream.offset(x, -1);
HWVar next = stream.offset(x, 1);
HWVar sum = prev+x+next;
HWVar result = sum/3;
// Output
io.output("y", result, hwFloat(8, 24));
```

}

Sparse Matrix Format

Typical scalability of SLB Sparse Matrix Applications

Sparse Matrix on FPGAs

- 4 MB BLK RAM
- Pipelining
- Addressing scheme optimized for Matrix structure
- Domain Specific Data Encoding

Sparse Matrix on FPGAs

Sparse Matrix on FPGAs

3D Convolution

- Low Flop/Byte ratio
- Sparse structure requires large streaming memory buffers (14×nx×ny for 14th order in space).
- Data Structure >> Data Caches

- CPUs:
- Constrained by:
 - Small L1/L2 cache
 - Limited utilization of pipeline
 - Limited by Streaming BW
 - Limited data element reuse
 - \rightarrow Fraction of peak performance

FPGA Opportunities

- FPGA opportunities
- 4 MB on-chip Memory
- Hundreds of pipeline stages
- Optimal trade off between streams for BW utilization and Pipe line depth

- CPU limits:
- Constrained by:
 - Small L1/L2 cache
 - Limited depth of pipeline
 - Limited by Streaming BW
 - Limited data element reuse
 - \rightarrow Fraction of peak performance

Performance

Algorithm	Hardware	Design	Speedup 8-core Nehalem 2.93 GHz 1U server <i>vs</i> 1U MaxNode
Star stencil	VIRTEX 5	3 pipe	20x
Star stencil	VIRTEX 6	9 pipe	73x

Outline

- Oil and Gas HPC applications
- Maxeler FPGA Compiler and Accelerators
- Key Computational Kernels in Geophysics
 - Sparse Matrix
 - Convolution based methods
- Applications scalability Technology trends
- Conclusions

Application scalability and Technology trends

- Transistor count keeps increasing
- Memory BW continues to trail
- How will our algorithms scale?

- Convolution:
 - Deeper pipelines:
 - An example: Cascading multiple time steps
 - Specialized macros on FPGAs

Х

Х

Z

Ж

Z

Х

Ж

Х

Х

Stencil width

Requires more computational units per pass but reduce memory bandwidth requirements

7

Technology opportunities

- Added Resources (Transistor scaling) translates directly into performance using Multiple time step techniques
- Independent of Memory BW increase

Resource costs for a symmetric 15-point stencil:

	LUT/FFs	DSPs
MaxGenFD on Virtex-5	207	8
MaxGenFD on Virtex-6	33	8
Resulting perf. improvement	50 %	

Virtex-6 DSP enhanced with Pre-Adder

Outline

- Oil and Gas HPC applications
- Maxeler FPGA Compiler and Accelerators
- Key Computational Kernels in Geophysics
 - Sparse Matrix
 - Convolution based methods
- Applications scalability Technology trends
- Conclusions

Surviving the End of Scaling of Traditional Micro Processors in HPC

Conventional Road Map

Surviving the End of Scaling of Traditional Micro Processors in HPC

FPGA road maps

Thank You

GPU Comments