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. Why consider optics?

 Increased interest in silicon photonic interconnect
« Potential win in density, energy, BW over wires

* From an architectural view, optics is just another tool
« Use it If its characteristics give a net “win”
e But then we need to understand its costs

* This Is an introduction to these costs
* From a circuit/physical design perspective
 Alist of things to consider in a system evaluation
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. A generic serialized system

Here we consider just part of the whole system
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. Designers tweak all parts of this system

Lots of design effort in the CDR, PLL, mux/demux, etc.

* Link design depends on the architectural use-case

e Some applications allow
system simplifications

e E.g., Oracle’s “macrochip”
« Co-packaged chips sharing a silicon substrate [8]
« Optical links are inter-chip, but within-package
« Shared mesochronous clock between RX/TX
e Use periodic calibration (common time-sense)
« DWDM has potential for wide parallel I/O
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. Transmitter basics

« TX converts electrical signals into optical signals

_ Input
° Many device flavors Electrical current modulation

e Local light sources /\/\/\/\/\/
 VCSELSs, LEDs .
« CMQOS integration tricky
 Modulating a remote source
* MZs, rings, quantum wells Optical amplitude rﬁodulation
 Better integration prospects Output
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. Transmitter basics

« TX converts electrical signals into optical signals

_ Input
° Many device flavors Electrical current modulation

» Local light sources /\/\/\/\/\/

* VCSELSs, LEDs
« CMQOS integration tricky
 Modulating a remote source

Optical amplitude modulation
« Better integhqtion prospects Output

Consider these here
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. Transmitter basics, con’t

Driving ring modulators

* Good: ring modulators look like a lumped capacitance
e Simple abstraction for designers; matches CMOS
e Bad: they typically require a high voltage [1]
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. Transmitter basics, con’t

Driving ring modulators

 Fast high voltage switching using low-voltage devices
» Must take care to protect circuits [2]

Supporting Driver Voltage difference
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. Transmitter basics, con’t

Driving ring modulators

e Bad: modulators see temperature and aging effects
* Need driver power and/or environment control [3]
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. Transmitters and ring modulators

* High-voltage drive is not a very difficult problem
» At least, it’s fairly well understood

e The hard problem is temperature control
* Rings sensitive to sub-1° K temperature changes
 Standard solution is to dynamically heat them
e |s this efficient enough to make rings useful?
« Until shown (at scale), this is the gating issue
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. Back to the generic system diagram

The RX has a different (perhaps more interesting?) set of issues
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. Receiver basics

Let’s start with the simplest system possible

« Simple mechanism: photodiode turns light = current
« “Responsivity” is on order of 1 uA per pW

Optical light amplitude

L Input modulation
RVAN
Cp
modulation

Output Electrical current
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. Not surprisingly, this is a simple circuit
Go back to Circuits 101

» Resistor performs a current-to-voltage conversion
» Capacitor introduces a low-pass filter pole [5]
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. A key characteristic of any receiver is its SNR

Signal-to-noise ratio Thermally
induced
voltage

 For this receiver, SNR is relatively simple fluctuations

1 kT D
R.Co Gain = Ry, Noise o
I? R? I? hu
SNR= -l — | TR
o kTCpBW
D .[ l

n

- Cp

* Note that SNR Is independent of R, L Ry
* For a fixed BW and C,




. Why do we care about SNR?

(If it were really important, wouldn’t the internet cease to exist?)

« Larger SNR - smaller probability of error
* Areasonable estimate of BER: 10-SNR/4.5
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. SNR example

Signal-to-noise ratio

» Let’'s pick some interesting numbers

1 kT
BW = in = ise = —
R.0p Gain = Ry, Noise

7R} I? 2z
in — in 5 & ZS
& kTCpBW l

SNR =

BW = 21 x 4GHz
Cp = 50fF } SNR = 760 | Cp R,

I'z'.n = 10[1,A

e This is huge! So what'’s the catch? i
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. The catch is that the gain is too small

Cascaded amplifiers (to get a ~1V signal at the output) degrade the SNR

* Noise of the cascade is set by noise of the 15t stage
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. But how do we get more gain in the first place?

Big BW requires small capacitance and small resistance

 Recall that

1
BW =

RLCD
* So In this case, R, (=gain) must be at most 800Q2

* An input signal of 10 pA turns into at most 8 mV

* For more signal you need more R,—and go
slower

Gain = Rj,

* R, tightly couples signal gain and bandwidth
 How can we decouple these two?
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. An example first-stage amplifier

A “textbook” transimpedance amplifier (TIA)

* For an equivalent BW, the gain has gone up by A

e But at what cost? What about noise?
RF Gain = RF

A
—MAN— BW =
RFC D
huw %
Voltage out
C ti ! —
urrent in Izn A Vaut
C D C M
Transimpedance
amplifier (TIA)
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. “There ain’t no such thing as a free lunch”

 The amplifier degrades SNR
» Basic trade-offs independent of amplifier topology

T A
NN BW = -~
hw F
Voltage out
Current in Ian - A ‘/aut
Cp—= . .
b Cwm Relative size

L of input stage
) r w.r.t. input
capacitance
I? Cuv BW
in v f M

SNR. = 5
kTCpBW

Cp’ wr , Technology
parameter
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. What does this mean?

2 (cM BW
— 5 X f
kETCpBW

Relative size
of input stage
w.r.t. input
capacitance

SNR.

Cp’ wr , Technology
parameter

* SNR relationship shows the fundamental tradeoffs
* Between BW, input capacitance and input signal
* This applies to the vast majority of RX topologies

e The function f is of secondary importance
e Can be derived analytically for simple TIA designs
e See discussion in [/]
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. SNR degradation from an inverter amplifier

The actual amplifier topology does not change the results a lot

. Cu 1
At optimal o = 73 SNR degraded by nearly 3X
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Operating under power constraints
We don’t usually operate at the condition for optimal SNR

* Under power constraints, we pick a required SNR
- Let that set the power (i.e., the ratio C,,/Cp)
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. Capacitance ratio C,,/Cy Is a proxy for power

* For optimum SNR, the amplifier power is constrained
» Fixed by the parasitic capacitance Cy

RF Gain = Rp
—_ AAA, _ A
hwzg BW RyC
| . B A Voltage out
Current in Ian ‘/a'u.t 9onm @ 4Gb/S
oL SNR=50
D Cm 200 £J/b [6]
C lpym  150uA
Power = [ —= XCDXM—X £ X Vpp
CD / opt 1{F 1pm
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. Bottom line

« TX, RX circuits consume 2/3'9s of optical link energy
« About 1/3™ for each

e TX: Control of temperature and aging effects critical

* RX: For a given Prob(Error) target
* There is a fixed SNR, and
e There is a fundamental tradeoff between
 SNR, signal, bandwidth, and input capacitance
 Input capacitance is a proxy for power
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