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Chip-Scale Interconnection Networks

Intel Polaris IBM Cell AMD Opteron

• Chip multi-processors create need for high 
performance interconnects

• Performance bottleneck of on-chip networks and I/O
• Power dissipation constraints of the chip package

• > 50% of total power comes from interconnects*

* N. Magen et al., “Interconnect-power dissipation in a microprocessor,” SLIP 2004.
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Motivation

• CMPs of the future = 3D stacking
• Lots of data on chip
• Photonics offers 

key advantages
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Why Photonics?

TX RX

ELECTRONICS:
 Buffer, receive and re-transmit at 

every router.

 Each bus lane routed independently. 
(P ∝ NLANES)

 Off-chip BW is pin-limited and 
power hungry.

Photonics changes the rules for Bandwidth, Energy, and Distance.

OPTICS:
 Modulate/receive high bandwidth 

data stream once per communication 
event.

 Broadband switch routes entire multi-
wavelength stream.

 Off-chip BW = On-chip BW for 
nearly same power.

RX

TX

RX RX

TX

RX

TX RXTX TX TXTXTX TX

RX
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Hybrid Network Premise

Optical processing difficult and limited

Source, destination routing inefficient

Use electronics for routing, 
optics for switching and transmission

Hybrid Circuit-Switching
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Hybrid Circuit-Switched Networks

Step 1: Path SETUP request

Electronic 
SETUP Msg

Source core
Destination Core
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Hybrid Circuit-Switched Networks

Step 2: Path ACK

Electronic 
ACK Msg
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Hybrid Circuit-Switched Networks

Step 3: Transmit Data

Photonic 
Switch Use 
Information



9

Hybrid Circuit-Switched Networks

Meanwhile: Path Contention

Path 
BLOCKED Msg
(Backoff)
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Hybrid Circuit-Switched Networks

Step 4: Path TEARDOWN

Electronic 
TEARDOWN 
Msg

Source core
Destination Core
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Hybrid Circuit-Switched Networks

• Energy-efficient end-to-
end transmission

• High bandwidth through 
WDM

• Electronic network still 
available for small 
control messages*

• Network-level support 
for secure regions

• Path setup latency
• Path setup contention 

(no fairness)

Pros: Cons:

* [G. Hendry et al. Analysis of Photonic Networks for a Chip Multiprocessor Using Scientific Applications. In NOCS, 2009]  



Programming and Communication
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Shared Memory

Implicit 
Communication

Explicit 
Communication

scaling

“… [ OpenMPon large systems] often performs worse than message passing due to 
a combination of false sharing, coherence traffic, contention, and system issues that 
arise from the difference in scheduling and network interface moderation” 

~ ExascaleReport
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Partitioned Global Address Space

Implicit 
Communication

Explicit 
Communication

[G. Hendry et al. Circuit-Switched Memory Access in Photonic Interconnection Networks for HPEC. In Supercomputing,  Nov. 2010]

Access Method

Local Read Optical Receive

Local Write Optical send

Remote Read Electronic request, optical receive

Remote Write Optical send

Shared R/W ?
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Message Passing

Implicit 
Communication

Explicit 
Communication

* [G. Hendry et al. Analysis of Photonic Networks for a Chip Multiprocessor Using Scientific Applications. In NOCS, 2009]  

• Complex, dynamic access 
patterns

• Relatively larger blocks of data
• Scientific computing  
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Streaming

Implicit 
Communication

Explicit 
Communication

1

2

3

4

Input Data
Output Data

Persistent optical circuits

• Embedded / specialized systems (Graphics, Image + Signal Proc.)
• Execution mode of general-purpose systems (Cell Processor)



Electronic Plane
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Electronic Router

Arbiter

…

Control Router

Data Switch

Buffer Crossbar

Buffer Cntrl

Data Path

XbarCntrlRequest Bus

Flow Control

XbarAllocation

Data Switch 
Allocation

Routing Logic

Credits In

XbarCntrl

Ring Cntrl

Ring Cntrl

• Low frequency operation (~ 1GHz)
• 1 VC (typically)
• Small buffers (64-28)
• Narrow Channels (8-32)
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Network Gateway

Core

Core

Core

Core

Tx/Rx
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Bidirectional 
Waveguide

Bidirectional 
Electronic Channel

Control RouterElectronic Crossbar

5-port 
photonic switch

To/From 
Control plane

To/From 
Data plane
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[P. Kumar et al. Exploring concentration and channel slicing in on-chip network router. In NOCS, 2009]

External Concentration



The Photonic Plane



21

Wavelength Division Multiplexing

λ

waveguide
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Silicon Photonic Waveguide Technology

[Vlasov and McNab, Optics Express 12 (8) 1622 (2004)]

C23
(1559 nm)

C28

(1555 nm)
C46

(1541 nm)
C51

(1537 nm)

before injection 
into waveguide

after 5-cm waveguide 
and EDFA

[B. G. Lee et al., Photon. Technol. Lett. 20 (10) 767 (2008)]

1.28 Tb/s Data Transmission Experiment
(occupies small slice of available WG BW)

100 ps

Silicon photonic waveguides provide low-power optical 
interconnects in CMOS-compatible platform.

Low-loss (1.7 
dB/cm), high-bandwidth 
(> 200 nm) silicon 
photonic waveguides 
can be fabricated in 
commercial CMOS 
process.
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Ring Resonator Operation

λ

λ

modulator/filter

Broadband spatial switch
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Silicon Photonic Modulator  and Detector Technology

[M Watts, Group Four Photonics (2008)]

[M Lipson, Optics Express (2007)]

 85 fJ/bit demonstrated at 10 Gb/s
 Scalable to < 25 fJ/bit

 18 Gb/s demonstrated

[S Koester, J. Lightw. Technol. (2007)]

Ge-on-Si Detectors:
 40-GHz bandwidths
 1 A/W responsivities

Receivers (detectors w/ CMOS 
amplifiers):
 1.1 pJ/bit demonstrated at 10 Gb/s
 Scalable to < 50 fJ/bit

(CW) 
LASER

modulator detector
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Higher Order Switch Designs

[A. Biberman, IEEE Phot. Tech. Letters (2010)]
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On-Chip Topology Exploration

• Photonic Torus • Nonblocking Photonic 
Torus

[A. Shacham et al., Trans. on Comput., 2008] [M. Petracca et al. IEEE Micro, 2008]
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On-Chip Topology Exploration

• TorusNX • Square Root

[J. Chan et al.  JLT, May 2010]
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Photonic Plane Characteristics

• Insertion Loss
• Noise
• Power
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Insertion Loss and Optical Power Budget 

Nonlinear Effects
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Detector Sensitivity
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Insertion Loss vs. Bandwidth

Network Size
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r 
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 λ

Topologies
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Simulation Results
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Simulation Results
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improvement in crossing loss from 0.15 dB to 0.05 dB.
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Photonic Plane Characteristics

• Insertion Loss
• Noise
• Power
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Noise and Crosstalk

Laser Noise

Inter-Message Crosstalk

Intra-Message Crosstalk

Modulation Noise

Crosstalk

Filter

Coherent noise

Incoherent noise
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Effects of Noise
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Simulation Results
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The line at OSNR=16.9 dB is where a bit-error-rate of   
10-12 can be achieved, assuming an ideal binary receiver 
circuit and orthogonal signaling.

Results 
•Results are plotted for network size of 8×8 
at saturation, at the detectors.
• Maximum OSNR = ~45 dB (due to laser 
noise)
• Minimum OSNR < 17 dB (due to 
message-to-message crosstalk)
• Variations between networks due to 
varying likelihood of two message 
intersecting on network topology.

System Performance
• SNR measures the likelihood of error-free 
transmission.
• Lower SNR designs will require additional 
retransmission, resulting in lower 
throughput performance.
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Photonic Plane Characteristics

• Insertion Loss
• Noise
• Power
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Power Usage
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Injected Wavelengths

Off-resonance profile

On-resonance profile

• Laser Power
• Active Power

• Modulating
• Detecting
• Broadband

• Static Power
• Thermal tuning

• Tx\Rx Power
• Drivers
• TIAs
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Energy Per Bit
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Power Breakdown

Router Logic
43%

Router 
Buffer
44%

Electronic 
Wire
3%

Detector
3%

Modulator
4%

PSE
2%

Thermal
1%

Router Logic
45%

Router 
Buffer
44%

Electronic 
Wire
2%

Detector
2%

Modulator
4%

PSE
2%

Thermal
1%

• Results based on randomly generated traffic with message sizes of 100 kbit, with network in saturation.
• Data was collected on 64 nodes topologies constrained to a total surface area of 2 cm × 2 cm.

Torus Topology Nonblocking Torus Topology

• 7 wavelengths @ 10 Gbps/each
• Power Dissipation = 1.59 W

• 12 wavelengths @ 10 Gbps/each
• Power Dissipation = 4.31 W
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Power Breakdown

Router Logic
37%

Router Buffer
31%

Electronic 
Wire
1%

Detector
10%

Modulator
17%

PSE
1%

Thermal
3%

Router Logic
34%

Router Buffer
31%

Electronic 
Wire
7%

Detector
8%

Modulator
14%

PSE
2%

Thermal
4%

Square Root Topology TorusNX Topology

• 38 wavelengths @ 10 Gbps/each
• Power Dissipation = 3.22 W

• 27 wavelengths @ 10 Gbps/each
• Power Dissipation = 1.89 W



Performance
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Performance

• Uniform random traffic
• 256 cores, 64-node network
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Scientific Applications
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Other Interesting Issues
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Memory Access

Processor Core

Network Router

Memory Access Point

[G. Hendry et al. Circuit-Switched Memory Access in Photonic Interconnection Networks for HPEC. In Supercomputing,  Nov. 2010]
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Other Arbitration Means - TDM

[G. Hendry et al. Silicon Nanophotonic Network-On-Chip Using TDM Arbitration. In HOTI,  Aug. 2010]
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Wavelength Granularity

• Original  Re-design

λ λ

 Scalable number of WDM 
channels
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Conclusion

• Some applications / programming models definitely 
well-suited to a circuit-switched photonic network

• Interesting tradeoffs and design space
• Photonic physical layout / design
• System-level benefits from device improvement
• Network-level improvements
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