

Hybrid On-chip Data Networks

Gilbert Hendry

Keren Bergman

Lightwave Research Lab Columbia University

Chip-Scale Interconnection Networks

- Chip multi-processors create need for high performance interconnects
- Performance bottleneck of on-chip networks and I/O
- Power dissipation constraints of the chip package
 - > 50% of total power comes from interconnects*

Intel Polaris

AMD Opteron

* N. Magen *et al.*, "Interconnect-power dissipation in a microprocessor," SLIP 2004.

Motivation

- CMPs of the future = 3D stacking
- Lots of data on chip
- Photonics offers key advantages

Photonics changes the rules for Bandwidth, Energy, and Distance.

ELECTRONICS:

- Buffer, receive and re-transmit at every router.
- Each bus lane routed independently. $(P \propto N_{LANES})$
- Off-chip BW is pin-limited and power hungry.

OPTICS:

- Modulate/receive high bandwidth data stream once per communication event.
- Broadband switch routes entire multiwavelength stream.
- Off-chip BW = On-chip BW for nearly same power.

Step 1: Path SETUP request

Step 2: Path ACK

Step 3: Transmit Data

Meanwhile: Path Contention

Step 4: Path TEARDOWN

Pros:

- Energy-efficient end-toend transmission
- High bandwidth through WDM
- Electronic network still available for small control messages*
- Network-level support for secure regions

Cons:

- Path setup latency
- Path setup contention (no fairness)

Programming and Communication

Shared Memory

"... [OpenMP on large systems] often performs worse than message passing due to a combination of false sharing, coherence traffic, contention, and system issues that arise from the difference in scheduling and network interface moderation" ~ Exascale Report

Access	Method
Local Read	Optical Receive
Local Write	Optical send
Remote Read	Electronic request, optical receive
Remote Write	Optical send
Shared R/W	?

[G. Hendry et al. Circuit-Switched Memory Access in Photonic Interconnection Networks for HPEC. In Supercomputing, Nov. 2010]

Message Passing

- Complex, dynamic access patterns
- Relatively larger blocks of data
- Scientific computing →

* [G. Hendry et al. Analysis of Photonic Networks for a Chip Multiprocessor Using Scientific Applications. In NOCS, 2009] ¹⁵

Streaming

- Embedded / specialized systems (Graphics, Image + Signal Proc.)
- Execution mode of general-purpose systems (Cell Processor)

Electronic Plane

Electronic Router

• Narrow Channels (8-32)

Network Gateway

External Concentration

[P. Kumar et al. Exploring concentration and channel slicing in on-chip network router. In NOCS, 2009]

The Photonic Plane

Wavelength Division Multiplexing

Silicon Photonic Waveguide Technology

Ring Resonator Operation

Silicon Photonic Modulator and Detector Technology

[M Watts, Group Four Photonics (2008)]

[S Koester, J. Lightw. Technol. (2007)]

Receive circuit

Higher Order Switch Designs

[A. Biberman, IEEE Phot. Tech. Letters (2010)]

On-Chip Topology Exploration

• Photonic Torus

Nonblocking Photonic Torus

[M. Petracca et al. IEEE Micro, 2008]

[A. Shacham et al., Trans. on Comput., 2008]

On-Chip Topology Exploration

TorusNX
Square Root

[J. Chan et al. JLT, May 2010]

Photonic Plane Characteristics

- Insertion Loss
- Noise
- Power

Insertion Loss and Optical Power Budget

Insertion Loss vs. Bandwidth

Simulation Results

Propagation Crossing Dropping Into a Ring

32

Original is based on the IL results from previous slide, *Improved* is based on a hypothetical improvement in crossing loss from 0.15 dB to 0.05 dB.

Photonic Plane Characteristics

- Insertion Loss
- Noise
- Power

Noise and Crosstalk

Effects of Noise

Simulation Results

<u>Results</u>

•Results are plotted for network size of 8×8 at saturation, at the detectors.

- Maximum OSNR = ~45 dB (due to laser noise)
- Minimum OSNR < 17 dB (due to message-to-message crosstalk)

• Variations between networks due to varying likelihood of two message intersecting on network topology.

System Performance

• SNR measures the likelihood of error-free 10 transmission.

• Lower SNR designs will require additional 0 retransmission, resulting in lower throughput performance.

The line at OSNR=16.9 dB is where a bit-error-rate of 10^{-12} can be achieved, assuming an ideal binary receiver circuit and orthogonal signaling.

Photonic Plane Characteristics

- Insertion Loss
- Noise
- Power

Power Usage

- Laser Power
- Active Power
 - Modulating
 - Detecting
 - Broadband
- Static Power
 - Thermal tuning
- Tx\Rx Power
 - Drivers
 - TIAs

- Results based on randomly generated traffic with message sizes of 100 kbit, with network in saturation.
- Data was collected on 64 nodes topologies constrained to a total surface area of $2 \text{ cm} \times 2 \text{ cm}$.

Performance

Performance

- Uniform random traffic
- 256 cores, 64-node network

Scientific Applications

Other Interesting Issues

Memory Access

[G. Hendry et al. Circuit-Switched Memory Access in Photonic Interconnection Networks for HPEC. In Supercomputing, Nov. 2010]

Other Arbitration Means - TDM

[G. Hendry et al. Silicon Nanophotonic Network-On-Chip Using TDM Arbitration. In HOTI, Aug. 2010]

Wavelength Granularity

• Scalable number of WDM channels

Conclusion

- Some applications / programming models definitely well-suited to a circuit-switched photonic network
- Interesting tradeoffs and design space
 - Photonic physical layout / design
 - System-level benefits from device improvement
 - Network-level improvements