

IBM Almaden Research Center

Storage Class Memory: Technology, Systems and Applications

Rich Freitas

freitas@almaden.ibm.com

Nonvolatile Memory Seminar Hot Chips Conference August 22, 2010 Memorial Auditorium, Stanford University

© 2010 IBM Corporation

Agenda

- Technology
 - –Disks
 - –Flash
 - -Phase Change Memory

Systems

- -Memory Systems
- -Storage Systems
- Applications

Definition of Storage Class Memory SCM

- A new class of data storage/memory devices
 - -many technologies compete to be the 'best' SCM

SCM features:

-Non-volatile

- -Short Access times (~ DRAM like)
- -Low cost per bit (more DISK like by 2020)
- -Solid state, no moving parts
- SCM blurs the distinction between
 - -MEMORY (fast, expensive, volatile) and
 - -STORAGE (slow, cheap, non-volatile)

_	
	and the second se
	E

System Targets for SCM

Megacenters

Mobile

Billions!

4

Desktop X

Datacenter

Storage Class Memory, Technology, Systems and Applications **Rich Freitas, IBM Research**

Hot Chips 8/2010

© 2010 IBM Corporation

History of HDD is based on Areal Density Growth

Storage Class Memory, Technology, Systems and Applications Rich Freitas, IBM Research **Hot Chips 8/2010**

IKM	_	
	-	

Enterprise Disk Rotational Latency

6

Hot Chips 8/2010

© 2010 IBM Corporation

Enterprise Disk Seek Times

Maximum Sustainable Data Rate

_	_	_	 5
		_	
	_		2
	_	_	
		-	

Many device technologies considered for SCM

- Phase Change RAM
 - most promising now (scaling)
- Magnetic RAM
 - used today, but poor scaling and a space hog
- Magnetic Racetrack
 - basic research, but very promising long term
- Ferroelectric RAM
 - used today, but poor scaleability
- Solid Electrolyte and resistive RAM (Memristor)
 - early development, promising
- Organic, nano particle and polymeric RAM
 - many different devices in this class, unlikely
- Improved FLASH

9

- still slow and poor write endurance

Generic SCM Array

Emerging Memory Technologies

8275.3µm

Storage Class Memory, Technology, Systems and Applications **Rich Freitas, IBM Research**

Hot Chips 8/2010

© 2010 IBM Corporation

Research interest

11

Papers presented at

- Symposium on VLSI Technology
- IEDM (Int. Electron Devices Meeting)

Storage Class Memory, Technology, Systems and Applications Rich Freitas, IBM Research

What is Flash?

- Based on MOS transistor
- Transistor gate is redesigned
 - Charge is placed or removed near the "gate"
 - The threshold voltage V_{th} of the transistor is shifted by the presence of this charge
 - The threshold Voltage shift detection enables non-volatile memory function.

Feeds and Speeds for typical NAND Flash

	NAND
Cell Size	4 F ² (2 F ² virtual x 2-bit MLC)
Read Access Time	20-50 us
Read	15-25 MB/s
Write	5-8MB/sec
Erase	2ms
Start Up Time	50-100 us
Market Size (2007)	\$14.2B
Applications	Multimedia

Representative NAND Flash Device

- Interface: one or two bytes wide
 Transition to ONFI for some vendors
- Data accessed in pages
 - 2112, 4224 or 8448 Bytes

- Data erased in blocks
 Block = 64 128 Pages
- Power circuits
 - -Charge Pumps
 - -Clock drivers
 - -Etc.

14

ONFI \rightarrow Open NAND Flash Interface

Storage Class Memory, Technology, Systems and Applications Rich Freitas, IBM Research

Representative Flash SSD Classes

History of Phase-change memory

- late 1960's Ovshinsky shows reversible electrical switching in disordered semiconductors
- early 1970's much research on mechanisms, but everything was too slow!

16

Hot Chips 8/2010

© 2010 IBM Corporation

Storage Class Memory, Technology, Systems and Applications Rich Freitas, IBM Research

17

Paths to ultra-high density memory

Rich Freitas, IBM Research

Industry SCM activities

- SCM research in IBM
- Intel/ST-Microelectronics spun out Numonyx (FLASH & PCM)
- Samsung, Numonyx sample
 PCM chips
- Over 30 companies work on SCM

19

-including all major IT players

IBM sub-litho PCM Alverstone PCM

Samsung 512 Mbit PCM chip

Magnetic Racetrack Memory

MRAM alternatives **a 3-D shift** register

20

- Data stored as pattern of magnetic domains in long nanowire or "racetrack" of magnetic material.
 - Current pulses move domains along racetrack
- •Use deep trench to get many (**10-100**) bits per 4F²

Magnetic Race Track Memory S. Parkin (IBM), *US patents* 6,834,005 (2004) & 6,898,132 (2005)

Magnetic Racetrack Memory

- Need deep trench with notches to "pin" domains
- Need sensitive sensors to "read" presence of domains
- Must insure a moderate current pulse moves every domain one and only one notch
- Basic physics of current-induced domain motion being investigated

Promise (10-100 bits/F²) is enormous...

21

but we're still working on our basic understanding of the physical phenomena...

© 2010 IBM Corporation

Storage Class Memory, Technology, Systems and Applications Rich Freitas, IBM Research

22

Architecture

23

Synchronous •Hardware managed •Low overhead •Processor waits •Fast SCM, Not Flash •Cached or pooled memory

Asynchronous

- Software managed
- High overhead
- Processor doesn't wait
- •Switch processes
- •Flash and slow SCM
- •Paging or storage

		- ·	
		_	_
		_	and the second se
_	_		
_		_	

SCM in a large System

24

CPU & Memory System Conceptual Alternatives

_	_	_	
		-	The second second second
		_	
_	_		_

Input from the device cost crystal ball

Storage Class Memory, Technology, Systems and Applications Rich Freitas, IBM Research

SCM: Generic Storage Design

Storage Class Memory, Technology, Systems and Applications Rich Freitas, IBM Research

Challenges with SCM

- Asymmetric performance
 - Flash: writes much slower than reads
 - Not as pronounced in other technologies
- Program/erase cycle
 - -Issue for flash
 - -Most are write-in-place
- Data retention and Non-volatility
 - -It's all relative
 - -Use case dependent
- Bad blocks

29

- -Devices are shipped with bad blocks
- -Blocks wear out, etc.

- The "fly in the ointment" is write endurance
 - In many SCM technologies writes are cumulatively destructive
 - For Flash it is the program/erase

cycle

- -Current commercial flash varieties
 - Single level cell (SLC) 10⁵
 - Multi-level cell (MLC) 104
- -Coping strategy --> wear leveling
- -Typically hidden from applications by infrastructure

IBM

Write and/or read endurance and life-time of SCM devices

- In DRAM and disks (magnetic) there is no known wear out mechanism
- In flash and many SCM technologies there are known wear out mechanisms

T_{life} = **Endurance** • **Fill-Time**

Fill-Time: time to write a memory unit (what's a data unit?)

• Simple wear leveling → each write is done to a new (empty) location

	DRAM	Disk	256GB	Flash	8 GB SCM
Endurance	>10 ¹⁶	>1011	$10^5 \rightarrow$	104	108
Wear leveled	Ν	Ν	Ν	Y	Y
Memory unit	1 B	512 B	128 KB	256 GB	8 GB
Data unit	1 B	512 B	128 KB	128 KB	128 B
Fill Time	100 ns	4 ms	2 ms	4000 s	500 s
Life Time	>31 yrs	>12 yrs	<4 min	>12 yrs	>190 yrs

SCM impact on software

Operating systems

- -Extend state information kept about memory pages
- -New mechanisms to manage new resource
- -Enhanced to provide hints to other layers of software
- –Potential for direct involvement in managing caches and pools

• Middle ware and applications \rightarrow evolutionary

- Improved performance impact immediate full exploitation will occur gradually
- -Little near term demand for non-volatility
- -Cost improvements will drive memory size
- -Memory size will drive larger and more complex data structures.
- -Reload time on a crash will be exacerbated
- User's need for non-volatility, persistence, etc. will be driven by these effects – blurring of memory and storage

IBM QuickSilver Project \rightarrow SSD proof of concept

- Ultra-fast storage performance without managing 1000's of disks.
 - Demonstrated performance of over 1 million IOPS using 40 SSDs.
 - Reduced \$/IOPS, significantly lower than traditional disk storage farm.
 - -Reduced floor space per IOPS
 - Improved energy efficiency for high performance workloads.
 - Reduced number of storage elements to manage

32

SAN: Storage Area Network SVC: San Volume Controller

Shift in Systems and Applications

- DRAM Disk Tape
 - -Cost & power constrained
 - Paging not used
 Only one type of memory: volatile

- DRAM SCM Disk Tape
 - -Much larger memory space for same power and cost
 - -Paging viable
 - Memory pools: different speeds, some persistent
 - -Fast boot and hibernate
 - Active data on SCM
 - -Inactive data on disk/tape
 - -DAS ??

Storage:

Active data on disk
Inactive data on tape
SANs in heavy use

Applications:

Compute centricFocus on hiding disk latency

- -Data centric comes to fore
- -Focus on efficient memory use and exploiting persistence
- -Fast, persistent metadata

EASY TIER KEY MESSAGES

>SMART STORAGE

>EASY AND SIMPLE

➢GREEN

>GREEN

34

>WORKLOAD OPTIMIZED

Performance increase of 230% by automatic movement of 3% of the application's data to SSD

Storage Class Memory, Technology, Systems and Applications Rich Freitas, IBM Research

SCM Design Triangle

Power!

35

Summary

- Storage Class Memory is a new class of data storage/memory technology → many technologies are competing to be the 'best' SCM
- SCM blurs the distinction between memory and storage
- SCM will impact the design of computer systems and applications
- Flash, which has may SCM characteristics, is available now and various SCMs are in the wings.
- EasyTier like software will foster exploitation of Flash and SCM

IBM

References

FAST2010 Tutorial

-T2: Freitas and Chiu, <u>Solid State Storage: Technology</u>, <u>Design and Applications</u>

-http://www.usenix.org/events/fast10/tutorials

IBM Journal of Research and Development

-Special issue on storage

- -http://www.research.ibm.com/journal/rd52-45.html
- –Four papers related to SCM

Questions?