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Outline

• NVM Memory Trends & Challenges

• Technology Space for RRAM

• Challenges and SEMATECH RRAM Results
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System on Chip (SOC)Mobile

Dense, local memory – improve 
system performance 

Future trends: Memory for mobile 
and SOC applications

• IMPACT: High density, low cost NVM important for mobile application

• IMPACT: Local (embedded) memory important for System on Chip
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Advantage Challenges
“Speculative”

Priority
Phase Change RAM • Speed & cost vs. NOR • Density, Power (Ireset) production

SiN / Nano Crystal 
Charge Trap

• Relatively mature
• difficult to beat floating gate
• candidate for 3 -D 

1

RRAM • High speed & density • Materials, I reset, Reliability 2

STT-RAM • endurance, speed , power
• Magnetic domain size effect 
• Etch difficulty
• Challenging materials

2

Mechanical memory
• Power
• Leakage

• Reliable operation
• Scalability

4

Molecular memory • Density (Molecule size ~nm) • Poor thermal stability 5

Vertical String • 2-5x lower $$ vs. stacked 
• deposited tunnel ox
• transistor in trench sidewall

1

Cross bar array • effective density below 4F 2
• Litho $: more costly vs. NAND
• selector device

2

Stacked • similar to current NAND • Litho $: more costly vs. NAND 3
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Sub 20nm memory cell, architecture 
candidates
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[1] W. Y. Choi, and T.-J. King Liu IEDM p. 603 (2007).
[2] A. Driskill-Smith, Y. Huai Future Fab p. 28 (2007).
[3] J. E. Green Nature v. 445  p. 414 (2007).
[4] B. Yu IEEE Trans on Nanotech 7, p. 496 (2008).
[5] Kryder, et. al. IEEE TRANS ON MAGNETICS, 45, NO. 10,  (2009)

• MLC = NAND
• Cost structure = NAND
• Function, reliability = NAND
• Density > NAND 
• Speed > NAND
• RRAM, STT interesting.
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Sub 20nm memory benchmarking

Success Criteria: Future NVM
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Which space should RRAM target?
Associated challenges to compete with DRAM/NAND/NOR

Program/write speed (ns)

DRAM
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SRAM

0.01

0.1

1

10

100

101 102 103 104 105 106 107

HDD

3-D multilayer crossbar
(dense NVM)

1T1R  BEOL memory 
(SOC memory)

To achieve 3-D CrossBar:
• $: 9 critical levels  

in 4 layer stack
• EUV?
• DP?
• Selector
• Etch 

25nm L/S

To Compete w/NAND
• Cost 
• Reset current
• MLC (density)
• 3-D integration

To compete w/DRAM:
• Better endurance
• Better reset current
• Current scaling
• Uniformity

RRAM challenge: 
compete w/ NAND cost
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Challenges with RRAM

• Too many materials (manufacturability?)

• Reducing reset currents (power)

• Uniformity

• Endurance

• Integration with selector device (1T1R, 1D1R)
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Many RRAM materials: Many not 
manufacturable
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• Many materials risky to put into a semiconductor development line

X = Materials in RRAM literature report
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Which RRAM materials are 
manufacturing worthy?
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• Focus on engineering materials that are already in the semiconductor fab (green)

X = Materials in RRAM literature report

X = Materials in fabs today
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STT-MRAM Materials also challenging
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X = Materials in STT-MRAM
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PVD metal oxide RRAM development

• PVD ideal for Stoichiometry Control, thin, uniform films

• ALD films also developed, but may still need PVD for electrode.

• IMPACT: Correct material Me:O enables correct function.
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• Resistance switching currents  (I reset) improved ~ 1000x.

• I reset improved to 1~10 µA range – desire 10x more improvement.

• IMPACT: Sub 1 µA device likely meets U.S. DARPA target for Switching Energy (fJ/bit)
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Reducing Metal oxide RRAM Reset Currents 
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• SEMATECH has exceeded member company target for 2010 Ireset

• 5 micro-amp reset currents achieved with manufacturable metal oxide

0

5

10

15

20

# 
M

at
er

ia
ls

 
S

cr
ee

ne
d

ALD PVD

Process Type

Target



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 100 1000 10000 100000

Z. Wei, IEDM 2008 p. 239

LRS HRS

Resistance (Ohm)

P
ro

ba
bi

lit
y

RRAM Reset Uniformity Improves

• Uniformity of High Resistance state improve across wafer (>300pts).
• IMPACT: Uniformity is key issue for Manufacturability - Multilevel Cell

Improvement
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DC check
Between 1st and 2nd 105 cycles

• Good initial RRAM cycling (2x10 5 +) – much work to do yet
• IMPACT: If RRAM achieves fJ/bit and 10 15 cycles it competes with DRAM
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Encouraging RRAM endurance check
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• Further work needed on devices meeting Ireset, but encouraging initial data.

Metal oxide RRAM has 
demonstrated reasonable retention
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Selector Challenge

Reduce 
RRAM Reset 

Currents 
<1µA

Relax 
Selector 

Drive Needs 
<106 A/cm2
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Selector 
Device

Bitline

Wordline

RRAM
Element

• Why does reset current matter?

• SELECTOR  lesser Ireset means lesser diode current requirements

• IMPACT:  Selector flexibility eases challenge of array integration

D. Kau, Intel, IEDM 2009 

1D1R

Trade-off
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Basic metal oxide RRAM Mechanism

• Switching, retention, endurance controlled by defec ts

• IMPACT: Need to understand details for reliable product

Binary oxides : filament formation

O
O atom

O vacancy

Conductive Filament

“Good” Insulator 



SEMATECH test structure
Test structure allows reproducible electrical / reliability data

Test 
Structure

Structure Purpose

1. Contact -
type MIM 
structure

(x-section)

• Quick materials studies

2. Stack -type 
MIM  

structure
(X-section)

• Quick materials studies

3. 1T1R test 
structure
(top view)

• Iso 1T1R, Iso 1R, 
• Cross Pt Array1T1R

• Detailed Ireset studies
• Detailed parasitic studies
• Array retention, endurance
• 25nm x 25nm CD

Si

SiO2

Bottom electrode

TiN
Metal cap

Top electrode

Metal Oxide

Substrate

Insulator

TE
MOx

Bottom electrode

ILD
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Overview of SEMATECH capabilities

State of Art Test 
Structure Design

Process 
Design

New Memory 
Materials

Sub 30nm Test 
Structure 

Fabrication

Reliability & 
Parametric 

Test

Transfer 
material, flow, 
equipment to 

manufacturers
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Partner with 
universities

Partner with 
CNSE,SVTC

Partner with 
Universities

Partner with Mfg 
Companies

SEMATECH  1T1R Test Pattern Design

SEMATECH  20nm Nano Devices

SEMATECH  Mfg Members Use Modules
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Conclusions

• Planar floating gate will be pushed to 2X nm.

• RRAM may compete as SOC memory (BEOL).

• RRAM may fit between NAND &DRAM cost space (stand alone)
– Cost will be key
– 4F2 cell with ~4 levels achieve effective 1F2 (MLC necessary)

• Materials challenges addressed
– Manufacturable MeOx and electrode
– Reset / set currents are approaching acceptable levels (1micro-amp)
– Improved Uniformity Encouraging
– Endurance, retention are promising, need improvement >1e5 cycles
– Selector device and polar / bipolar design are challenges

• Quality test structures (1T1R) assist in accurate characterization, 
development
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