
Sun's 3rd generation on-
chip UltraSPARC security
accelerator

Lawrence Spracklen

Sun's 3rd generation
on-chip UltraSPARC
security accelerator

Lawrence Spracklen
Sun Microsystems

2

Accelerators are evolving

● Security is becoming evermore essential
> From web servers to databases, from filesystems to networking

• Security is costly from a performance perspective
> 2X+ slowdowns are commonplace when 'going secure'

> High cost is hindering adoption

● Offloading cryptographic processing to accelerators can virtually
eliminate the security overhead

> Reduces cost of crypto processing by 20X+

> Zero-cost security?

• Traditional off-chip accelerator approach has significant limitations
> Benefits can be limited to accelerating RSA operations

• Accelerators have been steadily moving closer to the cores
> Necessary for effective acceleration in many application spaces

> Modern processors typically have on-chip support for cryptographic acceleration

3

Accelerator usage models

● In many applications, the size of most objects processed by
accelerators is small

● Phenomenon not just limited to web workloads e.g.
> IPsec dealing with <1500-byte objects

> VoIP dealing with ~250-byte objects

• Requires strict control of software overheads associated with
using the accelerator

0

10

20

30

40

50

60

70

80

90

100

Object size (KB)

%
 o

f r
eq

ue
st

s
(c

um
ul

at
iv

e)

 37% of objects <100B

 89% of all objects <1.5KB

 Largest objects 45.6KB

SPECweb2005 banking workload

0 5 10 15 20 25 30 35 40 45

4

UltraSPARC accelerator evolution

1) UltraSPARC T1 (aka Niagara) processor [2005, 8 accelerators]

● Accelerators target modular arithmetic operations
> Accelerate public-key cryptography (e.g. RSA algorithm)

2) UltraSPARC T2 processor [2007, 8 accelerators]

● Accelerators enhanced to also support:
> Bulk encryption

> Secure hash

> Elliptic Curve Cryptography (ECC)

3) Rainbow Falls (RF) processor [16 accelerators]

• Accelerators further enhanced to support:
> Kasumi bulk cipher

> SHA-512 (rounding out SHA-2 support) & partial hash support

> Non-priv 'fast-path' to the accelerators

5

RF UltraSPARC crypto accelerator

• Accelerators are per core
> 2 basic sub-units (can operate in parallel)

> Operate in parallel with threads

• Accelerator is shared by all the
core’s strands
> 8 strands per core on UltraSPARC RF

• Accelerators are Hyerprivileged
> Each strand could be under the control

of a different OS

• Accelerators expose a light-
weight interface to SW
> Communication via a memory-based control

word queue (CWQ)

> Requests are fully self-contained

> Both sync and async operation supported

Scratchpad

160x64b,2R/1W

Execution

DMA Engine

Hash

Engine

Cipher

Engine

To FP
mul

rs1 rs2

Store Data, Address
Address,

data
to/from

L2

From
FP mul

Modular arithmetic unit

Cipher/hash unit

RF accelerator overview

6

Rainbow Falls (RF) peak performance

• RF provides up to 16 accelerators per processor

• Common ciphers supported (helps SSL, IPsec etc)

• HW peak performance is dependent on object size
> ~90% of peak for 1KB objects when L2$ sourced

> ~70% of peak for 1KB objects when DRAM sourced

• Accelerators support common modes of operation
for block ciphers (EBC, CBC, CTR, & CFB)

• Hashed Message Authentication Code (HMAC)
support

• HW gather support

• HW support for IP checksum and CRC32c
acceleration and data movement

Algorithm

DES

3DES

AES-128

AES-192

AES-256

Kasumi

Algorithm

MD5

SHA-1

SHA-256

SHA-512

Algorithm

RSA-1024

RSA-2048

ECC

Bulk cipher

Secure hash

Public key

7

Additional RF crypto instructions

• Rainbow Falls (RF) introduces several crypto centric non-priv
instructions:

umulxhi
> Returns the upper 64-bits of a 64x64-bit integer multiplication

> Along with new addxc{cc} instructions allows bignum functions to operate directly on
64-bit data chunks

xmulx/xmulxhi
> Can be used to accelerate Galois field computations

> Important for many authenticated encryption algorithms e.g. AES-GCM

> Preferable to use the dedicated accelerators for GF(2M) ECC operations

• RF multiplier is fully pipelined

• RF also introduces an IP checksum instruction
> Useful for IPsec acceleration (network card checksum generation not practical)

8

1
2

.5 2
5

3
7

.5 5
0

6
2

.5 7
5

8
7

.5

1
0

0

0

10

20

30

40

50

1 2 3 4 5 6 7 8

0

10

20

30

40

50

• Accelerators deliver excellent large object performance

• Small packet performance is also critical to customers

UltraSPARC T2 accelerator
performance (large packets)

1-socket 8-core 1.4GHz T2 (Userland)

1-socket 8-core 1.4GHz T2 (Kernel)

2-socket 4-core 2.67GHz Clovertown

(8 cores total)

T
hr

ou
gh

pu
t (

G
b/

s)
 [8

K
B

 o
bj

ec
ts

]

% utilization # cores

T
hr

ou
gh

pu
t (

G
b/

s)
 [8

K
B

 o
bj

ec
ts

]

Threads boundThreads unbound
AES-128-cbcAES-128-cbc

9

Cryptographic framework overheads

• Access to the accelerators controlled by
Solaris cryptographic framework

• SW stack traversal adds significant overhead
to offloads

• Data copying often required due to
accelerators use of physical addresses

• Basic SW architecture mirrored in many other
cryptographic frameworks

> e.g. Open Cryptographic Framework (OCF)

• Classic frameworks introduce significant
software overheads to accelerator offloads

> OK for long latency public-key operations

> Not as obvious for offchip accelerator cards

• Most problematic for server-class processors
> Embedded security processors typically run with

simple executive

User

Kernel

User application

Interface library

/dev/crypto

Scheduler

Device driver

Hardware

Hypervisor

src

tmp

dst

tmp

10

RF accelerator fast-path - motivation

• For onchip accelerators to be effective, these software
overheads must be reduced
> Current situation curtailing small packet performance

> This requirement is not crypto specific and is mirrored by most acceleratable operations

PKCS11

Operating

system
Hypervisor

CWQ

Tail ptr

Application

blocking

Tens of thousands of cycles

<500-cycles for 100B (AES)

data in data out

tmp tmp

11

RF accelerator fast-path - overview

• OS/HV traditionally involved on
every interaction with the
accelerator

● Could enhance the accelerator
such that only 1 Hypervisor (HV)
interaction is required per
session
> Only 1st access would require HV

"approval"

> All subsequent accesses should proceed
without HV or OS intervention

● Allowing a non-priv application to
directly access the accelerators
would virtually eliminate the SW
overheads

OpenSSL

data in data out

Application

src dst

PAHV

CWQ

UL

CWQ

<500-cycles for 100B (AES)

blocking

CID

PID

Tail ptr

Head ptr

Pg Sz

12

 Challenges

• Provide user applications with direct access to a shared
resource while ensuring:
> Security for the user

> Protection from malicious users

• User has limited control over their environment
> Thread can be switched out at ANY time

> Thread could be moved between cores at ANY time

> Thread's access to the accelerator could be revoked at ANY time

• Accelerators operate on physical addresses
> Application needs to pass pointers to accelerator without opportunity for abuse

> OS can page-out application data at ANY time

• Multiple threads within a single user process may need
concurrent access to the accelerators

• Multiple user processes may want concurrent access to the
accelerators

> Minimum modifications to existing software

> Flexibility

13

RF accelerator fast-path - details

• Initial mediation between the accelerator and user application
is performed by the Hypervisor (HV)

• Correct behaviour is subsequently enforced by the accelerator
hardware
> User requests are uniquely tagged by the HW to allow the accelerators to identify

authorized users

> Standard address space protections leveraged to secure data

> Requests from unauthorized users are ignored by the accelerators

> CWQ and objects to be processed are constrained to known pinned pages for which
the accelerator has the physical address (TLB on a budget :-)

• Key requirement was to minimize modifications to T2
accelerator

• Augmented existing accelerator with:
1) Space for limited virtual to physical address translations & page size info

2) Storage for authorized process partition ID (PID) and context ID (CID) information

3) Non-priv equivalents for subset of accelerator commands

14

RF accelerator initialization

• SW requests direct access to the
accelerator from OS/HV
> If accelerator is available, HV may grant

request

• HV provides accelerator with
1) CID/TID information of requesting process

(uniquely identifies requesting process)

2) Physical address of buffer in which application
will place data to be processed

3) Physical address of application’s control-word
queue (CWQ)

• HV provides application with
virtual address of buffer and CWQ

• Only required once per process
> Occurs 1st time any thread wants to obtain

direct access to an accelerator

OpenSSL

Operating

system

Hypervisor

Application

src dst

PAHV

CWQ

UL

CWQ
CID

PID

Tail ptr

Head ptr

Pg Sz

15

OpenSSL

Application

src dst

Make request to OpenSSL

TIME

RF user-privileged operation (1/4)

HV

CWQ

UL

CWQ

PA CID

PID

Tail ptr

Head ptr

Pg Sz

• New accelerator interface not
exposed directly to users

• By leveraging existing APIs user
apps don't require recoding
1) Could also utilize other libraries e.g.

PKCS11, NSS

16

OpenSSL

data in

Application

src dst

TIME

Copy object into pinned page

RF user-privileged operation (2/4)

HV

CWQ

UL

CWQ

PA CID

PID

Tail ptr

Head ptr

Pg Sz > Objects to be processed are placed in the
src/dst page

> Accelerator will refuse to process objects not
contained in the src page (preventing access
violations)

> By forcing communication via this page, the
VA->PA conversion problems are avoided –
the accelerator has a translation for this
page

• SW/HW interaction is designed
such that;
> HV can remove access to the accelerator at

any time

> SW elegantly recovers from accelerator
removal or inter-core migration during
programming

> SW ensure MT processes safely share the
CWQ

17

OpenSSL

Application

blocking

src dst

Accelerator Processing

TIME

> src/dst page is pinned by the OS, preventing
the page from being paged out while
accelerator is operating

> Removes requirement for accelerator to
snoop all demaps

RF user-privileged operation (3/4)

HV

CWQ

UL

CWQ

<500-cycles for 100B (AES)

PA CID

PID

Tail ptr

Head ptr

Pg Sz

• Application interacts directly with
the accelerator
> Inserts control-word in CWQ

> Updates accelerator's CWQ pointer (to
reflect new entry) via special store
instructions

> Application queries accelerator using
special loads to determine successful
completion

18

OpenSSL

data in data out

Application

src dst

Copy object out of pinned page

TIME

RF user-privileged operation (4/4)

HV

CWQ

UL

CWQ

blocking

PA CID

PID

Tail ptr

Head ptr

Pg Sz

• In-place transforms are not
permitted
> Allows accelerator operations to be aborted

at ANY time

• Cost of moving data in and out of
the pinned page is trivial for
small objects
> Copy can be eliminated with careful object

placement

19

RF accelerator fast-path -
performance
• RF 'fast-path' improves application-level small packet

performance by up to 30X (compared to T2)
> Now just a handful of stores required to program the accelerator

• Allows userland applications to obtain close to HW peak
performance for all packet sizes

• Careful application integration can eliminate need for data
copying
> Area/complexity/inheritance constraints prevented a more elegant HW solution

• Fast-path interface can be wrapped in OpenSSL or JCE to
allow existing applications to benefit without
recoding/recompilation

• Binding can be performed with per- accelerator granularity
> For cost-saving only one control queue per accelerator

> Minimal overheads associated with re-targeting control queue

20

RF support for new chaining modes

• Many newly defined authenticated
encryption algorithms e.g. AES-GCM

• RF splits computation between HW
and SW

> Faster than pure ISA-based crypto approach

• For example, AES-GCM:
> SW performs GHASH computation

> Efficient with XMULX/XMULXHI instructions

> Reduces instruction count by about 8X

> Accelerator performs AES-CTR

• SW can keep pace with HW

• Flexible approach; can readily handle
future modes

> Overcomes notion of inflexibility of discrete
accelerators

HW

SW

AES-GCM

21

RF support for Telco ciphers

• Kasumi is used for encryption and authentication in 3GPP

• Reworked SW implementation on T2
> Narrow, threaded cores alter compute/memory trade-offs

> Merging several small lookups tables can be beneficial even though it may make tables too
large for level-1 caches

> Reducing compute improved scaling and aggregate performance
nine = (u16)(in>>7);

seven = (u16)(in&0x7F);

nine = (u16)(S9[nine] ^ seven);

seven = (u16)(S7[seven] ^ (nine & 0x7F));

seven ^= (subkey>>9);

nine ^= (subkey&0x1FF);

nine = (u16)(S9[nine] ^ seven);

seven = (u16)(S7[seven] ^ (nine & 0x7F));

in = (u16)((seven<<9) + nine);

return(in);

2 level-1 cache resident tables [128 & 512 elements]

Compute dominates

Poor scaling on SMT cores

t0 = LT0[in];

t0 = t0 ^ subkey;

in = LT1[t0];

return(in);

2 level-2 cache resident tables [65536 elements each]

Limited compute

Great scaling on SMT cores

Comparable single-thread performance

Greatly improved aggregate MT performance

 RF HW performance still very advantageous

22

ISA-based crypto acceleration

Given discrete accelerator complexity why not adopt an instruction
based approach to cryptographic acceleration?

• Limited pipeline resources on CMT processors
> Highly shared pipelines easily monopolized by crypto operations

> Leaves cores for processing to which they are well suited

> On order of 60X reduction in pipeline utilization for 1KB object (discrete versus ISA)

• Typically higher performance on a per cycle basis if don’t have to
partition the computation into instructions

> Important for lower frequency, power efficient CMT processors

• Discrete accelerators typically more power efficient method for
performing crypto operations

• Discrete accelerators can help minimize cache pollution

• Not all crypto operations cleanly sub-divide into manageable
crypto instructions

23

Data

• RF continues UltraSPARC CMT tradition of providing on-chip
accelerators

• RF includes Sun’s 3rd generation on-chip security accelerator

• RF’s accelerator introduces
> Additional ciphers, chaining modes and secure hashes

> Non-priv fast-path to accelerators

• Fast-path eliminates vast majority of overheads associated with
offloads
> Allows direct interaction between non-priv applications and the accelerators

> Improves small object performance by up to 30X

• RF provides additional non-priv crypto instructions to help
accelerate authenticated-encryption operations

• RF builds on the successes of the UltraSPARC T2 and
significantly expands the application space which can benefit
from the accelerators

Summary

24

Acknowledgements

Farnad Sajjadian

Chris Olson

Sanjay Patel

Greg Grohoski

Stephen Phillips

Thank you ...

Lawrence.spracklen@sun.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

