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Accelerators are evolving

● Security is becoming evermore essential
> From web servers to databases, from filesystems to networking

• Security is costly from a performance perspective
> 2X+ slowdowns are commonplace when 'going secure'

> High cost is hindering adoption

● Offloading cryptographic processing to accelerators can virtually 
eliminate the security overhead

> Reduces cost of crypto processing by 20X+

> Zero-cost security?

• Traditional off-chip accelerator approach has significant limitations 
> Benefits can be limited to accelerating RSA operations

• Accelerators have been steadily moving closer to the cores
> Necessary for effective acceleration in many application spaces

> Modern processors typically have on-chip support for cryptographic acceleration
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Accelerator usage models

● In many applications, the size of most objects processed by 
accelerators is small

● Phenomenon not just limited to web workloads e.g.
>  IPsec dealing with <1500-byte objects 

>  VoIP dealing with ~250-byte objects

• Requires strict control of software overheads associated with 
using the accelerator
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UltraSPARC accelerator evolution

1) UltraSPARC T1 (aka Niagara) processor [2005, 8 accelerators]

● Accelerators target modular arithmetic operations
> Accelerate public-key cryptography (e.g. RSA algorithm)

2) UltraSPARC T2 processor [2007, 8 accelerators]

● Accelerators enhanced to also support:
> Bulk encryption

> Secure hash

> Elliptic Curve Cryptography (ECC)

3) Rainbow Falls (RF) processor [16 accelerators]

• Accelerators further enhanced to support:
> Kasumi bulk cipher

> SHA-512 (rounding out SHA-2 support) & partial hash support

> Non-priv 'fast-path' to the accelerators 
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RF UltraSPARC crypto accelerator

• Accelerators are per core
> 2 basic sub-units (can operate in parallel)

> Operate in parallel with threads

• Accelerator is shared by all the 
core’s strands
> 8 strands per core on UltraSPARC RF

• Accelerators are Hyerprivileged
> Each strand could be under the control 

of a different OS

•  Accelerators expose a light-
weight interface to SW
> Communication via a memory-based control 

word queue (CWQ)

> Requests are fully self-contained

> Both sync and async operation supported
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Rainbow Falls (RF) peak performance

• RF provides up to 16 accelerators per processor

• Common ciphers supported (helps SSL, IPsec etc) 

• HW peak performance is dependent on object size
> ~90% of peak for 1KB objects when L2$ sourced

> ~70% of peak for 1KB objects when DRAM sourced

•  Accelerators support common modes of operation 
for block ciphers (EBC, CBC, CTR, & CFB)

•  Hashed Message Authentication Code (HMAC) 
support

•  HW gather support

•  HW support for IP checksum and CRC32c 
acceleration and data movement
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Additional RF crypto instructions

• Rainbow Falls (RF) introduces several crypto centric non-priv 
instructions:

umulxhi
> Returns the upper 64-bits of a 64x64-bit integer multiplication

> Along with new addxc{cc} instructions allows bignum functions to operate directly on 
64-bit data chunks

xmulx/xmulxhi
> Can be used to accelerate Galois field computations

> Important for many authenticated encryption algorithms e.g. AES-GCM

> Preferable to use the dedicated accelerators for GF(2M) ECC operations

• RF multiplier is fully pipelined

• RF also introduces an IP checksum instruction
> Useful for IPsec acceleration (network card checksum generation not practical)
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• Accelerators deliver excellent large object performance

• Small packet performance is also critical to customers

UltraSPARC T2 accelerator 
performance (large packets)

1-socket 8-core 1.4GHz T2 (Userland)

1-socket 8-core 1.4GHz T2 (Kernel)

2-socket 4-core 2.67GHz Clovertown

(8 cores total)
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Cryptographic framework overheads

• Access to the accelerators controlled by 
Solaris cryptographic framework

• SW stack traversal adds significant overhead 
to offloads

• Data copying often required due to 
accelerators use of physical addresses

• Basic SW architecture mirrored in many other 
cryptographic frameworks  

> e.g. Open Cryptographic Framework (OCF) 

• Classic frameworks introduce significant 
software overheads to accelerator offloads

> OK for long latency public-key operations

> Not as obvious for offchip accelerator cards

• Most problematic for server-class processors
> Embedded security processors typically run with 

simple executive
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RF accelerator fast-path - motivation

• For onchip accelerators to be effective, these software 
overheads must be reduced
> Current situation curtailing small packet performance

> This requirement is not crypto specific and is mirrored by most acceleratable operations

PKCS11

Operating 

system
Hypervisor

CWQ

Tail ptr

Application

blocking

Tens of thousands of cycles

<500-cycles for 100B (AES)

data in data out

tmp tmp
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RF accelerator fast-path - overview

• OS/HV traditionally involved on 
every interaction with the 
accelerator

● Could enhance the accelerator 
such that only 1 Hypervisor (HV) 
interaction is required per 
session
> Only 1st  access would require HV  

"approval"

> All subsequent accesses should proceed 
without HV  or OS intervention

● Allowing a non-priv application to 
directly access the accelerators 
would virtually eliminate the SW 
overheads

OpenSSL

data in data out
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src dst
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blocking
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PID
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 Challenges

• Provide user applications with direct access to a shared 
resource while ensuring:
> Security for the user

> Protection from malicious users

• User has limited control over their environment
> Thread can be switched out at ANY time

> Thread could be moved between cores at ANY time

> Thread's access to the accelerator could be revoked at ANY time

• Accelerators operate on physical addresses
> Application needs to pass pointers to accelerator without opportunity for abuse 

> OS can page-out application data at ANY time

• Multiple threads within a single user process may need 
concurrent access to the accelerators

• Multiple user processes may want concurrent access to the 
accelerators 

> Minimum modifications to existing software

> Flexibility 
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RF accelerator fast-path - details

• Initial mediation between the accelerator and user application 
is performed by the Hypervisor (HV)

• Correct behaviour is subsequently enforced by the accelerator 
hardware
> User requests are uniquely tagged by the HW to allow the accelerators to identify 

authorized users

> Standard address space protections leveraged to secure data

> Requests from unauthorized users are ignored by the accelerators

> CWQ and objects to be processed are constrained to known pinned pages for which 
the accelerator has the physical address (TLB on a budget :-)

• Key requirement was to minimize modifications to T2 
accelerator

• Augmented existing accelerator with:
1) Space for limited virtual to physical address translations & page size info

2) Storage for authorized process partition ID (PID) and context ID (CID) information

3) Non-priv equivalents for subset of accelerator commands
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RF accelerator initialization

• SW requests direct access to the 
accelerator from OS/HV
> If accelerator is available, HV may grant 

request

• HV provides accelerator with
1) CID/TID information of requesting process 

(uniquely identifies requesting process)

2) Physical address of buffer in which application 
will place data to be processed

3) Physical address of application’s control-word 
queue (CWQ)

• HV provides application with 
virtual address of buffer and CWQ

• Only required once per process
> Occurs 1st time any thread wants to obtain 

direct access to an accelerator
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OpenSSL

Application

src dst

Make request to OpenSSL

TIME

RF user-privileged operation (1/4)

HV

CWQ

UL

CWQ

PA CID

PID

Tail ptr

Head ptr

Pg Sz

• New accelerator interface not 
exposed directly to users

• By leveraging existing APIs user 
apps don't require recoding
1) Could also utilize other libraries e.g. 

PKCS11, NSS
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OpenSSL

data in

Application

src dst

TIME

Copy object into pinned page

RF user-privileged operation (2/4)

HV

CWQ

UL

CWQ

PA CID

PID

Tail ptr

Head ptr

Pg Sz > Objects to be processed are placed in the 
src/dst page

> Accelerator will refuse to process objects not 
contained in the src page (preventing access 
violations) 

> By forcing communication via this page, the 
VA->PA conversion problems are avoided – 
the accelerator has a translation for this 
page

• SW/HW interaction is designed 
such that;
> HV can remove access to the accelerator at 

any time

> SW elegantly recovers from accelerator 
removal or inter-core migration during 
programming

> SW ensure MT processes safely share the 
CWQ
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OpenSSL

Application

blocking

src dst

Accelerator Processing

TIME

> src/dst page is pinned by the OS, preventing 
the page from being paged out while 
accelerator is operating

> Removes requirement for accelerator to 
snoop all demaps

RF user-privileged operation (3/4)
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<500-cycles for 100B (AES)

PA CID

PID

Tail ptr

Head ptr

Pg Sz

• Application interacts directly with 
the accelerator
> Inserts control-word in CWQ

> Updates accelerator's CWQ pointer (to 
reflect new entry) via special store 
instructions

> Application queries accelerator using 
special loads to determine successful 
completion
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OpenSSL

data in data out

Application

src dst
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TIME

RF user-privileged operation (4/4)
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• In-place transforms are not 
permitted
> Allows accelerator operations to be aborted 

at ANY time

• Cost of moving data in and out of 
the pinned page is trivial for 
small objects
> Copy can be eliminated with careful object 

placement
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RF accelerator fast-path - 
performance
• RF 'fast-path' improves application-level small packet 

performance by up to 30X (compared to T2)
> Now just a handful of stores required to program the accelerator

• Allows userland applications to obtain close to HW peak 
performance for all packet sizes

• Careful application integration can eliminate need for data 
copying
> Area/complexity/inheritance constraints prevented a more elegant HW solution

• Fast-path interface can be wrapped in OpenSSL or JCE to 
allow existing applications to benefit without 
recoding/recompilation

• Binding can be performed with per- accelerator granularity
> For cost-saving only one control queue per accelerator

> Minimal overheads associated with re-targeting control queue
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RF support for new chaining modes

• Many newly defined authenticated 
encryption algorithms e.g. AES-GCM

• RF splits computation between HW 
and SW 

> Faster than pure ISA-based crypto approach

• For example, AES-GCM:
> SW performs GHASH computation

> Efficient with XMULX/XMULXHI instructions

> Reduces instruction count by about 8X

> Accelerator performs AES-CTR

• SW can keep pace with HW

• Flexible approach; can readily handle 
future modes 

> Overcomes notion of inflexibility of discrete 
accelerators

HW

SW

AES-GCM
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RF support for Telco ciphers

• Kasumi is used for encryption and authentication in 3GPP

• Reworked SW implementation on T2 
> Narrow, threaded cores alter compute/memory trade-offs

> Merging several small lookups tables can be beneficial even though it may make tables too 
large for level-1 caches 

> Reducing compute improved scaling and aggregate performance
nine = (u16)(in>>7);

seven = (u16)(in&0x7F);

nine = (u16)(S9[nine] ^ seven);

seven = (u16)(S7[seven] ^ (nine & 0x7F));

seven ^= (subkey>>9);

nine ^= (subkey&0x1FF);

nine = (u16)(S9[nine] ^ seven);

seven = (u16)(S7[seven] ^ (nine & 0x7F));

in = (u16)((seven<<9) + nine);

return( in );

2 level-1 cache resident tables [128 & 512 elements]

Compute dominates

Poor scaling on SMT cores

t0 = LT0[in];

t0 = t0 ^ subkey;

in = LT1[t0];

return(in);

2 level-2 cache resident tables [65536 elements each]

Limited compute

Great scaling on SMT cores

Comparable single-thread performance

Greatly improved aggregate MT performance

 RF HW performance still very advantageous
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ISA-based crypto acceleration

Given discrete accelerator complexity why not adopt an instruction 
based approach to cryptographic acceleration?

• Limited pipeline resources on CMT processors
> Highly shared pipelines easily monopolized by crypto operations

> Leaves cores for processing to which they are well suited

> On order of 60X reduction in pipeline utilization for 1KB object (discrete versus ISA)

• Typically higher performance on a per cycle basis if don’t have to 
partition the computation into instructions

> Important for lower frequency, power efficient CMT processors

• Discrete accelerators typically more power efficient method for 
performing crypto operations

• Discrete accelerators can help minimize cache pollution

• Not all crypto operations cleanly sub-divide into manageable 
crypto instructions
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Data

• RF continues UltraSPARC CMT tradition of providing on-chip 
accelerators 

• RF includes Sun’s 3rd generation on-chip security accelerator

• RF’s accelerator introduces 
> Additional ciphers, chaining modes and secure hashes

> Non-priv fast-path to accelerators

• Fast-path eliminates vast majority of overheads associated with 
offloads
> Allows direct interaction between non-priv applications and the accelerators  

> Improves small object performance by up to 30X

• RF provides additional non-priv crypto instructions to help 
accelerate authenticated-encryption operations

• RF builds on the successes of the UltraSPARC T2 and 
significantly expands the application space which can benefit 
from the accelerators

Summary
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