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Moore’s Law Pre 2004

• Number of transistors per chip doubles every 
18 months

• Performance of single thread increases
• New generation hardware provides better 

user experience on existing applications or 
support new applications that cannot run on 
old hardware

• People buy new PC every three years
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Moore’s Law Post 2004

• Number of transistors per chip doubles every 18 
months

• Thread performance does not improve; number of 
cores per chip doubles
– power/clock constraints & diminishing returns on new 

microprocessor features
• New generation hardware provides better user 

experience on existing application or support new 
applications that cannot run on old hardware – only 
if these applications run in parallel & scale 
automatically

• Parallel Software is essential to maintaining the 
current business model of chip & system vendors

upcrc.illinois.edu5



Goals

• Create opportunity: New client applications that 
require high performance and can leverage high 
levels of parallelism

• Create SW to exploit opportunity: Languages, 
tools, environments, processes that enable the 
large number of client application programmers 
to develop good parallel code

• Create HW to exploit opportunity: Architectures 
that can scale to 100’s of cores and provide best 
use of silicon a decade from now 
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UPCRC Illinois Activities  
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Compute intensive client applications :
• Human-Computer Intelligent Interfaces

Parallel Programming Environments :
• Programming for the masses:

• Concurrency safe programming languages
• Refactoring tools
• Testing tools for unsafe languages

• Programming for top performance
• Parallel libraries 
• Interactive tuning 
• Autotuning  

Scalable Architectures:
• Scalable coherence protocols
• Architecture support for disciplined programming
• 1000 cores and beyond

PatternsUse new PPE
to develop 
kernels and 
libraries for 
apps

Provide HW 
support for 
PPE

Leverage 
safe, discipline
d languages 
for shared 
memory 
scalability

Educate parallel 
programmers

Codify main 
practices

Test  
expressiveness 
of PPE



APPLICATIONS
• Create Opportunity
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Applications Strategy

• Identify application types that
– are likely to execute on clients
– require much more performance than now available on a 

client
– can run in parallel

• Develop enabling parallel code (core libraries, 
application prototypes) for such application 
types
– hard to identify the killer app; easier to work in its “vicinity”
– doing so gives us an understanding of the apps 

requirements; demonstrates feasibility
– and leads to the creation of reusable software
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Client Application Drivers

• Intelligent user interfaces require high performance on the client 
side (!)
– graphics, vision, NLP

• Private information will be kept on the client side (?)
– concerns for privacy and security
– fewer efficiencies to be achieved on server side, because of limited sharing
– NLP, data mining, search

• High -availability services require client performance and 
adaptation
– Provide “best answer”, given current connectivity
– Adaptive applications (NLP)

• More powerful client reduces app development time 
– Games, browser

Create Find

TransformCommunicate

Understand

human information
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Next generation social communication medium
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• 3D reconstruction
– 1280x960xK (K=#eyes on a 3D camera) pixels to 

process in a macro-frame on a single PC
– N cameras employed: #N PCs needed

• 3D rendering
– NxM streams to renderer (N: avg. #cameras, M: 

#sites)

Performance numbers

(between UIUC & UCB):

93+105+37=235ms
Goal: <150ms



PROGRAMMING LANGUAGES

• Simple, race -free, coarse grain parallelism for the masses
• Data parallel libraries for SIMD/GPU performance
• Better testing and refactoring tools for the sequential -> 
parallel port
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Parallel Programming vs. 
Concurrent Programming

• Concurrent programming : concurrency is part of the 
application specification (HARD!)
– reactive code: system code, GUI, OLTP
– inherently nondeterministic: external concurrent interactions
– focused on concurrency management and synchronization: mutual 

exclusion, atomic transactions.
• Parallel programming : concurrent execution is 

introduced to improve performance (EASY?)
– transformational code, e.g. scientific computing, signal processing 
– inherently deterministic: external interactions are sequential
– focused on the generation of parallelism and on consumer-producer 

synchronization
• Multi -core creates significant new demand for parallel 

programming, but no significant new demand for 
concurrent programming.
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Parallelism Need Not Be Hard

• Some forms of parallelism are routinely used:
– vector operations (APL/Fortran90), domain-specific 

dataflow languages (Cantata/Verilog/Simulink), concurrent 
object languages (Squeak, Seaside, Croquet, Scratch)…

• Work on shared memory programming has been 
almost exclusively focused on (hard) concurrent 
programming 

• Investments on SW to support parallel 
programming have been minuscule and focused 
on expert programmers and “one -size-fits -all” 
solutions
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What Would Make Parallel 
Programming Easier?

• Isolation: effect of the execution of a module does not 
depend on other concurrently executing  modules. 

• Concurrency safety: Isolation is enforced by language

• Determinism: program execution is, by default, 
deterministic; nondeterminism , if needed, is introduced 
via explicit notation.

• Sequential semantics: sequential operational model, with 
simple correspondence between lexical execution state 
and dynamic execution state

• Parallel performance model: work, depth



Why is Determinism Good?
• Testing is much easier (single execution per input)
• Debugging is much easier (linear time)
• Easy to understand: execution equivalent to 

sequential execution
• Easy to incrementally parallelize code
• Can use current tools and methodologies for 

program development

• Nondeterminism seldom (if ever) needed for 
performance parallelism
– with exceptions such as chaotic relaxation, branch & bound, 

some parallel graph algorithms 
– when needed, can be highly constrained (limited number of 

nondeterministic choices)



Current State of the Art (1)
Parallelism mostly comes from parallel loops – we 

focus discussion on loops, for simplicity
• Implicit parallelism (C): Write sequential ( for) 

loops and hope the compiler parallelizes
Always safe, seldom efficient
 Often fails (compiler lacks information that user has)
∼ Performance model is defined after compilation (compiler 

can report which loops parallelize) – but is not  defined by 
source code and is compiler dependent

• Explicit parallelism (OpenMP): Write parallel 
(forall ) loops and force compiler to parallelize
Usually efficient, never safe
 Clear performance model
 Unsafe – races are not detected or prevented
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Current State of the Art (2)
• Speculative parallelism (C): Write sequential 

loops and have compiler parallelize 
speculatively
 Not efficient (without HW support)
 Performance model unclear
 Hard to catch, during development, “performance bugs”

• Functional parallelism (NESL, Haskell): Disallow 
mutable variables
 Clear performance model (see NESL)
 Not efficient (esp. w.r.t. memory use)
 Hard (Impossible?) to express certain parallel algorithms –

Need to support shared references to mutable objects 
(graph, array)
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Goal: Safe Parallelism
• Programmer provides additional assertions on 

effects of concurrent tasks (read and write sets)
• Compiler enforces assertions at run-time and uses

them at compile-time to prove that parallel execution 
is safe

• Should work for all/most loops that have no races, 
without undue programming effort

• Should be cheap to enforce at run -time (ideally, free)
– much cheaper than enforcing the “race-free” assertion, i.e. 

detecting races at run-time
– will often be subsumed by checks to enforce type safety, 

memory safety, etc.
• Fallback position: May trust assertions about 

“native” routines from trusted developers
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Implicit vs. Explicit Parallelism
• Explicit safe parallelism

– forall construct is annotated; compiler generates error if 
iterates cannot be proven to be independent

 proof mechanism is defined by language semantics
• Implicit safe parallelism

– for construct is annotated; compiler lets user know 
whether loop parallelizes

 proof mechanism is defined by compiler technology
• Same technology in both cases; different 

pragmatic choices 
– clear, compiler independent performance model vs. more 

continuity with current languages and more flexibility in 
advancing compiler analysis
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ARCHITECTURE

• How do coherence protocols scale and provide better 
support for current software? (Bulk  -- J. Torrellas)

• How do we take advantage of and better support new 
parallel languages? ( DeNovo -- S. Adve)

• How do we scale to >1000 cores? ( Rigel --S Patel)
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Fundamental Issues
• Coherence protocols handle accesses to 

each memory location individually – at great 
expense. Codes are written using “bulk 
transactions” that read or write sets of 
variables; can we take advantage of this?
– Chunk code execution adaptively (Bulk)
– Use information on synchronization operations 

(DeNovo)
– Expose check-in/check-out interface to user (Rigel)

• Architecture work pays attention to mutual 
exclusion, but not to producer -consumer
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The Bulk Multicore

• Novel scalable cache -coherent shared -memory (signatures & 
chunks)
– Relieves programmer/runtime from managing shared data

• High -performance sequential memory consistency
– Provides a more SW-friendly environment

• HW primitives for low -overhead program development & debug 
(data-race detection, deterministic replay, address disambiguation)
– Helps reduce the chance of parallel programming errors
– Overhead low enough to be “on” during production runs

http://iacoma.cs.uiuc.edu/bulkmulticore.pdf

General -purpose hardware architecture for programmability

Josep Torrellas



Idea in Bulk Multicore

• Idea: Eliminate the commit of individual instructions at a time

• Mechanism:
– By default, processors commit chunks of instructions at a time (e.g. 

2,000 dynamic instr)
– Chunks execute atomically and in isolation (using buffering and undo)
– Memory effects of chunks summarized in HW address signatures

• Advantages over current:
– Higher programmability
– Higher performance
– Simpler processor hardware

[CACM 2009]

The Bulk 
Multicore



SW

Application:  HW+SW for Deterministic 
Replay

• Goal: Support deterministic replay of parallel programs with 
minimal recording overhead and tiny logging requirements

• Results:
– By using the Bulk hardware, only need to record the interleaving of the 

chunks. Reduced the log size requirements by over 2 orders of 
magnitude [DeLorean in ISCA 2008]

– Extended Linux to have multiple Replay Spheres, enabling virtualization 
of the recording and replay hardware [Capo in ASPLOS 2009]

RSM

Sphere 1 

Recording

Sphere 2

Replaying

Sphere 3

Recording

HW Sphere 0 HW Sphere 1HW

Log 1 Log 2

Log 3

CPU 1 CPU 2 CPU 3 CPU 4

Josep Torrellas/Sam King



Application:  HW Support for Data Race 
Detection

• Goal: Use hardware to detect data races dynamically in 
production run codes with very low overhead

• Results:
– Processors automatically collect the addresses accessed in hardware 

signatures. An on-chip hardware module intersects the signatures in the 
background and identifies races.

– Effective race detection with only 20% execution overhead           
[SigRace in ISCA 2009]



DeNovo Architecture
Rethinking hardware with disciplined parallelism
• Hypothesis 1: Future hardware will require disciplined 

parallel models for
– Scalability
– Energy efficiency
– Correctness (Verifiability, testability, …)

• Hypothesis 2: Hardware/runtime support can make 
disciplined models more viable

– How do disciplined models affect hardware (& runtime)?
– Rethink hardware from the ground up

• Concurrency model, coherence,  tasks, …
– Co-design hardware & language 

concurrency models
Goal: Hardware that is

Scalable
Performing
Energy-efficient
Easy to design

Language

model
Hardware

model

Sarita Adve



Opportunities for Hardware

• Disciplined software allows optimizing
– Communication fabric
– Memory model and semantics
– Task scheduling and resource management

• Goal
– Unprecedented scalability and energy efficiency
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Some Key Ideas

• Exploit from software
– Structured control; region/effects; non-interference

• Communicate only the right data to the right 
core at the right time
– Eliminates unscalable directory sharing lists, complex 

protocol races, performance thwarting indirections
– Enables latency-, bandwidth-, and energy-efficient 

data transfers
– No false sharing, efficient prefetching and producer-

initiated communication
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Ongoing and Future Work

• Simulation prototype of DeNovo architecture
• Broadening supported software

– Unstructured synchronization and speculation
– Legacy codes

• Runtime support for disciplined languages
– Speculation, sandboxing, contract verification, …

• Virtual typed hardware/software interface
– Language-, platform-independent virtual ISA
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Architectural Framework:
The Rigel Architecture

• Non-HW coherent 
caches

• Area-efficient core 
design

• Primitive support for 
scalable 
synchronization and 
reductions

• Cache management 
support for locality 
enhancement

• Compiler, simulator, 
RTL all available now 

S Patel



• 1024 cores, 8MB Cluster Cache, 4MB Global Cache (~3 TOps/sec)
• Synthesized Verilog @45nm for cores, cluster cache logic
• SRAM Compiler for SRAM banks
• Other Logic: interconnect, mem controllers, global cache
• Typical power ~70 -99W

Mapping 1000 cores to 45nm

Gcache
30mm2

(10%)

Clocks, misc logic
30mm2

(9%)

Overhead
53mm2

(17%) Cluster Cache 
SRAM 
75mm2

(23%)

Core
112mm2 (35%)

Register Files
20mm2 (6%)

Clusters
207mm2

(67%)



Questions to be addressed

• Programming models that scale from 1000 
chips in a cluster to 1000 cores in a chip

• Run-time systems for scalable work 
distribution

• Locality management, architectural 
optimizations for memory bandwidth

• SIMD efficiency versus MIMD flexibility
• Power/energy optimizations for throughput 

oriented architectures



Summary

• Parallelism need not be hard
– much easier than traditional concurrent programming

• Parallel programming, like programming, is a 
team effort that requires many different skills 
and many different tools
– coarse-level parallelism for the masses, tuned 

libraries, refactoring tools, verification and tuning tools

• Parallel architectures can scale if they take 
advantage of practical constraints on 
communication and synchronization in real 
programs
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