
Universal Parallel Computing
Research Center

at Illinois
Making parallel programming

synonymous with programming

Marc Snir
08-09

The UPCRC@ Illinois Team

BACKGROUND

upcrc.illinois.edu3

Moore’s Law Pre 2004

• Number of transistors per chip doubles every
18 months

• Performance of single thread increases
• New generation hardware provides better

user experience on existing applications or
support new applications that cannot run on
old hardware

• People buy new PC every three years

upcrc.illinois.edu4

Moore’s Law Post 2004

• Number of transistors per chip doubles every 18
months

• Thread performance does not improve; number of
cores per chip doubles
– power/clock constraints & diminishing returns on new

microprocessor features
• New generation hardware provides better user

experience on existing application or support new
applications that cannot run on old hardware – only
if these applications run in parallel & scale
automatically

• Parallel Software is essential to maintaining the
current business model of chip & system vendors

upcrc.illinois.edu5

Goals

• Create opportunity: New client applications that
require high performance and can leverage high
levels of parallelism

• Create SW to exploit opportunity: Languages,
tools, environments, processes that enable the
large number of client application programmers
to develop good parallel code

• Create HW to exploit opportunity: Architectures
that can scale to 100’s of cores and provide best
use of silicon a decade from now

upcrc.illinois.edu6

UPCRC Illinois Activities

upcrc.illinois.edu7

Compute intensive client applications :
• Human-Computer Intelligent Interfaces

Parallel Programming Environments :
• Programming for the masses:

• Concurrency safe programming languages
• Refactoring tools
• Testing tools for unsafe languages

• Programming for top performance
• Parallel libraries
• Interactive tuning
• Autotuning

Scalable Architectures:
• Scalable coherence protocols
• Architecture support for disciplined programming
• 1000 cores and beyond

PatternsUse new PPE
to develop
kernels and
libraries for
apps

Provide HW
support for
PPE

Leverage
safe, discipline
d languages
for shared
memory
scalability

Educate parallel
programmers

Codify main
practices

Test
expressiveness
of PPE

APPLICATIONS
• Create Opportunity

upcrc.illinois.edu8

Applications Strategy

• Identify application types that
– are likely to execute on clients
– require much more performance than now available on a

client
– can run in parallel

• Develop enabling parallel code (core libraries,
application prototypes) for such application
types
– hard to identify the killer app; easier to work in its “vicinity”
– doing so gives us an understanding of the apps

requirements; demonstrates feasibility
– and leads to the creation of reusable software

upcrc.illinois.edu9

Client Application Drivers

• Intelligent user interfaces require high performance on the client
side (!)
– graphics, vision, NLP

• Private information will be kept on the client side (?)
– concerns for privacy and security
– fewer efficiencies to be achieved on server side, because of limited sharing
– NLP, data mining, search

• High -availability services require client performance and
adaptation
– Provide “best answer”, given current connectivity
– Adaptive applications (NLP)

• More powerful client reduces app development time
– Games, browser

Create Find

TransformCommunicate

Understand

human information

Graphics -- Motivation

Flexibility

R
ea

lis
m

Halo3

GTA4

2nd Life

WoW

Game Engineering
Faster, Cheaper

Online
Social

Spaces
More

Realistic

(Precomputation)

Multicore
Visual Apps

(T
im

e,
 $

$
$
)

John Hart

Next generation social communication medium

12

Klara Nahrstedt

• 3D reconstruction
– 1280x960xK (K=#eyes on a 3D camera) pixels to

process in a macro-frame on a single PC
– N cameras employed: #N PCs needed

• 3D rendering
– NxM streams to renderer (N: avg. #cameras, M:

#sites)

Performance numbers

(between UIUC & UCB):

93+105+37=235ms
Goal: <150ms

PROGRAMMING LANGUAGES

• Simple, race -free, coarse grain parallelism for the masses
• Data parallel libraries for SIMD/GPU performance
• Better testing and refactoring tools for the sequential ->
parallel port

upcrc.illinois.edu14

Parallel Programming vs.
Concurrent Programming

• Concurrent programming : concurrency is part of the
application specification (HARD!)
– reactive code: system code, GUI, OLTP
– inherently nondeterministic: external concurrent interactions
– focused on concurrency management and synchronization: mutual

exclusion, atomic transactions.
• Parallel programming : concurrent execution is

introduced to improve performance (EASY?)
– transformational code, e.g. scientific computing, signal processing
– inherently deterministic: external interactions are sequential
– focused on the generation of parallelism and on consumer-producer

synchronization
• Multi -core creates significant new demand for parallel

programming, but no significant new demand for
concurrent programming.

upcrc.illinois.edu15

Parallelism Need Not Be Hard

• Some forms of parallelism are routinely used:
– vector operations (APL/Fortran90), domain-specific

dataflow languages (Cantata/Verilog/Simulink), concurrent
object languages (Squeak, Seaside, Croquet, Scratch)…

• Work on shared memory programming has been
almost exclusively focused on (hard) concurrent
programming

• Investments on SW to support parallel
programming have been minuscule and focused
on expert programmers and “one -size-fits -all”
solutions

upcrc.illinois.edu16

What Would Make Parallel
Programming Easier?

• Isolation: effect of the execution of a module does not
depend on other concurrently executing modules.

• Concurrency safety: Isolation is enforced by language

• Determinism: program execution is, by default,
deterministic; nondeterminism , if needed, is introduced
via explicit notation.

• Sequential semantics: sequential operational model, with
simple correspondence between lexical execution state
and dynamic execution state

• Parallel performance model: work, depth

Why is Determinism Good?
• Testing is much easier (single execution per input)
• Debugging is much easier (linear time)
• Easy to understand: execution equivalent to

sequential execution
• Easy to incrementally parallelize code
• Can use current tools and methodologies for

program development

• Nondeterminism seldom (if ever) needed for
performance parallelism
– with exceptions such as chaotic relaxation, branch & bound,

some parallel graph algorithms
– when needed, can be highly constrained (limited number of

nondeterministic choices)

Current State of the Art (1)
Parallelism mostly comes from parallel loops – we

focus discussion on loops, for simplicity
• Implicit parallelism (C): Write sequential (for)

loops and hope the compiler parallelizes
Always safe, seldom efficient
 Often fails (compiler lacks information that user has)
∼ Performance model is defined after compilation (compiler

can report which loops parallelize) – but is not defined by
source code and is compiler dependent

• Explicit parallelism (OpenMP): Write parallel
(forall) loops and force compiler to parallelize
Usually efficient, never safe
 Clear performance model
 Unsafe – races are not detected or prevented

upcrc.illinois.edu19

Current State of the Art (2)
• Speculative parallelism (C): Write sequential

loops and have compiler parallelize
speculatively
 Not efficient (without HW support)
 Performance model unclear
 Hard to catch, during development, “performance bugs”

• Functional parallelism (NESL, Haskell): Disallow
mutable variables
 Clear performance model (see NESL)
 Not efficient (esp. w.r.t. memory use)
 Hard (Impossible?) to express certain parallel algorithms –

Need to support shared references to mutable objects
(graph, array)

upcrc.illinois.edu20

Goal: Safe Parallelism
• Programmer provides additional assertions on

effects of concurrent tasks (read and write sets)
• Compiler enforces assertions at run-time and uses

them at compile-time to prove that parallel execution
is safe

• Should work for all/most loops that have no races,
without undue programming effort

• Should be cheap to enforce at run -time (ideally, free)
– much cheaper than enforcing the “race-free” assertion, i.e.

detecting races at run-time
– will often be subsumed by checks to enforce type safety,

memory safety, etc.
• Fallback position: May trust assertions about

“native” routines from trusted developers

upcrc.illinois.edu21

Implicit vs. Explicit Parallelism
• Explicit safe parallelism

– forall construct is annotated; compiler generates error if
iterates cannot be proven to be independent

 proof mechanism is defined by language semantics
• Implicit safe parallelism

– for construct is annotated; compiler lets user know
whether loop parallelizes

 proof mechanism is defined by compiler technology
• Same technology in both cases; different

pragmatic choices
– clear, compiler independent performance model vs. more

continuity with current languages and more flexibility in
advancing compiler analysis

upcrc.illinois.edu22

ARCHITECTURE

• How do coherence protocols scale and provide better
support for current software? (Bulk -- J. Torrellas)

• How do we take advantage of and better support new
parallel languages? (DeNovo -- S. Adve)

• How do we scale to >1000 cores? (Rigel --S Patel)

upcrc.illinois.edu23

Fundamental Issues
• Coherence protocols handle accesses to

each memory location individually – at great
expense. Codes are written using “bulk
transactions” that read or write sets of
variables; can we take advantage of this?
– Chunk code execution adaptively (Bulk)
– Use information on synchronization operations

(DeNovo)
– Expose check-in/check-out interface to user (Rigel)

• Architecture work pays attention to mutual
exclusion, but not to producer -consumer

upcrc.illinois.edu24

The Bulk Multicore

• Novel scalable cache -coherent shared -memory (signatures &
chunks)
– Relieves programmer/runtime from managing shared data

• High -performance sequential memory consistency
– Provides a more SW-friendly environment

• HW primitives for low -overhead program development & debug
(data-race detection, deterministic replay, address disambiguation)
– Helps reduce the chance of parallel programming errors
– Overhead low enough to be “on” during production runs

http://iacoma.cs.uiuc.edu/bulkmulticore.pdf

General -purpose hardware architecture for programmability

Josep Torrellas

Idea in Bulk Multicore

• Idea: Eliminate the commit of individual instructions at a time

• Mechanism:
– By default, processors commit chunks of instructions at a time (e.g.

2,000 dynamic instr)
– Chunks execute atomically and in isolation (using buffering and undo)
– Memory effects of chunks summarized in HW address signatures

• Advantages over current:
– Higher programmability
– Higher performance
– Simpler processor hardware

[CACM 2009]

The Bulk
Multicore

SW

Application: HW+SW for Deterministic
Replay

• Goal: Support deterministic replay of parallel programs with
minimal recording overhead and tiny logging requirements

• Results:
– By using the Bulk hardware, only need to record the interleaving of the

chunks. Reduced the log size requirements by over 2 orders of
magnitude [DeLorean in ISCA 2008]

– Extended Linux to have multiple Replay Spheres, enabling virtualization
of the recording and replay hardware [Capo in ASPLOS 2009]

RSM

Sphere 1

Recording

Sphere 2

Replaying

Sphere 3

Recording

HW Sphere 0 HW Sphere 1HW

Log 1 Log 2

Log 3

CPU 1 CPU 2 CPU 3 CPU 4

Josep Torrellas/Sam King

Application: HW Support for Data Race
Detection

• Goal: Use hardware to detect data races dynamically in
production run codes with very low overhead

• Results:
– Processors automatically collect the addresses accessed in hardware

signatures. An on-chip hardware module intersects the signatures in the
background and identifies races.

– Effective race detection with only 20% execution overhead
[SigRace in ISCA 2009]

DeNovo Architecture
Rethinking hardware with disciplined parallelism
• Hypothesis 1: Future hardware will require disciplined

parallel models for
– Scalability
– Energy efficiency
– Correctness (Verifiability, testability, …)

• Hypothesis 2: Hardware/runtime support can make
disciplined models more viable

– How do disciplined models affect hardware (& runtime)?
– Rethink hardware from the ground up

• Concurrency model, coherence, tasks, …
– Co-design hardware & language

concurrency models
Goal: Hardware that is

Scalable
Performing
Energy-efficient
Easy to design

Language

model
Hardware

model

Sarita Adve

Opportunities for Hardware

• Disciplined software allows optimizing
– Communication fabric
– Memory model and semantics
– Task scheduling and resource management

• Goal
– Unprecedented scalability and energy efficiency

upcrc.illinois.edu30

Some Key Ideas

• Exploit from software
– Structured control; region/effects; non-interference

• Communicate only the right data to the right
core at the right time
– Eliminates unscalable directory sharing lists, complex

protocol races, performance thwarting indirections
– Enables latency-, bandwidth-, and energy-efficient

data transfers
– No false sharing, efficient prefetching and producer-

initiated communication

upcrc.illinois.edu31

Ongoing and Future Work

• Simulation prototype of DeNovo architecture
• Broadening supported software

– Unstructured synchronization and speculation
– Legacy codes

• Runtime support for disciplined languages
– Speculation, sandboxing, contract verification, …

• Virtual typed hardware/software interface
– Language-, platform-independent virtual ISA

upcrc.illinois.edu32

Architectural Framework:
The Rigel Architecture

• Non-HW coherent
caches

• Area-efficient core
design

• Primitive support for
scalable
synchronization and
reductions

• Cache management
support for locality
enhancement

• Compiler, simulator,
RTL all available now

S Patel

• 1024 cores, 8MB Cluster Cache, 4MB Global Cache (~3 TOps/sec)
• Synthesized Verilog @45nm for cores, cluster cache logic
• SRAM Compiler for SRAM banks
• Other Logic: interconnect, mem controllers, global cache
• Typical power ~70 -99W

Mapping 1000 cores to 45nm

Gcache
30mm2

(10%)

Clocks, misc logic
30mm2

(9%)

Overhead
53mm2

(17%) Cluster Cache
SRAM
75mm2

(23%)

Core
112mm2 (35%)

Register Files
20mm2 (6%)

Clusters
207mm2

(67%)

Questions to be addressed

• Programming models that scale from 1000
chips in a cluster to 1000 cores in a chip

• Run-time systems for scalable work
distribution

• Locality management, architectural
optimizations for memory bandwidth

• SIMD efficiency versus MIMD flexibility
• Power/energy optimizations for throughput

oriented architectures

Summary

• Parallelism need not be hard
– much easier than traditional concurrent programming

• Parallel programming, like programming, is a
team effort that requires many different skills
and many different tools
– coarse-level parallelism for the masses, tuned

libraries, refactoring tools, verification and tuning tools

• Parallel architectures can scale if they take
advantage of practical constraints on
communication and synchronization in real
programs

upcrc.illinois.edu36

	Universal Parallel Computing Research Center�at Illinois
	The UPCRC@ Illinois Team
	BACKGROUND
	Moore’s Law Pre 2004
	Moore’s Law Post 2004
	Goals
	UPCRC Illinois Activities
	APPLICATIONS
	Applications Strategy
	Client Application Drivers
	Graphics -- Motivation
	3D Tele-Immersion
	Need for Speed
	Programming languages
	Parallel Programming vs. Concurrent Programming
	Parallelism Need Not Be Hard
	What Would Make Parallel Programming Easier?
	Why is Determinism Good?
	Current State of the Art (1)
	Current State of the Art (2)
	Goal: Safe Parallelism
	Implicit vs. Explicit Parallelism
	architecture
	Fundamental Issues
	The Bulk Multicore
	Idea in Bulk Multicore
	Application: HW+SW for Deterministic Replay
	Application: HW Support for Data Race Detection
	DeNovo Architecture
	Opportunities for Hardware
	Some Key Ideas
	Ongoing and Future Work
	Architectural Framework:�The Rigel Architecture
	Mapping 1000 cores to 45nm
	Questions to be addressed	
	Summary

