
Paral lel
Appl icat ions

Paral lel
Hardw are

Paral lel
Sof t w areI T indust ry Users

1

Overview of the UC Berkeley Par Lab

David Patterson
August 2009

2

A Parallel Revolution, Ready or Not
 Power Wall = Brick Wall

 End of way built microprocessors for last 40 years
 Intel Pentium 4: most power/transistor inefficient CPU

New “Moore’s Law” is 2X processors (“cores”) / chip
every technology generation, but ≈ same clock rate
 “This shift toward increasing parallelism is not a

triumphant stride forward based on breakthroughs …;
instead, this … is actually a retreat from even greater
challenges that thwart efficient silicon implementation
of traditional solutions.”

The Parallel Computing Landscape: A Berkeley View, Dec 2006

 Sea change for HW & SW industries since changing
the model of programming and debugging

2005 IT Roadmap Semiconductors

3

0

5

10

15

20

25

2001 2003 2005 2007 2009 2011 2013C
lo

ck
 R

at
e

(G
H

z)

2005 Roadmap

Intel single core

Change in ITS Roadmap in 2 yrs

4

0

5

10

15

20

25

2001 2003 2005 2007 2009 2011 2013C
lo

ck
 R

at
e

(G
H

z)

2005 Roadmap

2007 Roadmap
Intel single core

Intel multicore

Why might we succeed this time?
 No Killer Microprocessor to Save Programmers

 No one is building a faster serial microprocessor
 For programs to go faster, SW must use parallel HW

 New Metrics for Success vs. Linear Speedup
 Real Time Latency/Responsiveness and/or MIPS/Joule
 Just need some new killer parallel apps

vs. all legacy SW must achieve linear speedup

 Necessity: All the Wood Behind One Arrow
 Whole industry committed, so more working on it
 If future growth of IT depends on faster processing at

same price (vs. lowering costs like NetBook)

5

Why might we succeed this time?

 Multicore Synergy with Cloud Computing
 Cloud Computing apps parallel even if client not parallel

 Vitality of Open Source Software
 OSS community more quickly embraces advances?

 Single-Chip Multiprocessors Enable Innovation
 Enables inventions that were impractical or

uneconomical when multiprocessors were 100s chips

 FPGA prototypes shorten HW/SW cycle
 Fast enough to run whole SW stack, can change every

day vs. every 4 to 5 years when do chips

6

Need a Fresh Approach to Parallelism

 Past parallel projects often dominated by
hardware/architecture
 This is the one true way to build computers:

software must adapt to this breakthrough
 ILLIAC IV, Thinking Machines CM-2, Transputer,

Kendall Square KSR-1, Silicon Graphics Origin 2000 …

 Or sometimes by programming language
 This is the one true way to write programs:

hardware must adapt to this breakthrough
 ID, Backus Functional Language FP, Occam, Linda,

High Performance Fortran, Chapel, X10, Fortress …

 Apps usually an afterthought
7

8

Need a Fresh Approach to Parallelism
 Berkeley researchers from many backgrounds started

meeting in Feb. 2005 to discuss parallelism
 Krste Asanovic, Ras Bodik, Jim Demmel, Kurt Keutzer, John

Kubiatowicz, Dave Patterson, Koushik Sen, John Shalf, John
Wawrzynek, Kathy Yelick, …

 Circuit design, computer architecture, massively parallel
computing, computer-aided design, embedded hardware
and software, programming languages, compilers,
scientific programming, and numerical analysis

 Tried to learn from successes in high-performance
computing (LBNL) and parallel embedded (BWRC)

 Led to “Berkeley View” Tech. Report 12/2006 and
new Parallel Computing Laboratory (“Par Lab”)

 Goal: Productive, Efficient, Correct, Portable SW for
100+ cores & scale as core increase every 2 years (!)

Par Lab’s original research “bets”
 Let compelling applications drive research agenda
 Software platform: data center + mobile client
 Identify common programming patterns
 Productivity versus efficiency programmers
 Autotuning and software synthesis
 Build correctness + power/performance diagnostics

into stack
 OS/Architecture support applications, provide

primitives not pre-packaged solutions
 FPGA simulation of new parallel architectures: RAMP

Above all, no preconceived big idea –
see what works driven by application needs

10

Personal
Health

Image
Retrieval

Hearing,
Music

Speech
Parallel
Browser

Design Patterns/Motifs

Sketching

Legacy
Code

Schedulers
Communication &
Synch. Primitives

Efficiency Language Compilers

Par Lab Research Overview
Easy to write correct programs that run efficiently on manycore

Legacy OS

Multicore/GPGPU

OS Libraries & Services

ParLab Manycore/RAMP

Hypervisor

C
or

re
ct

ne
ss

Composition & Coordination Language (C&CL)

Parallel
Libraries

Parallel
Frameworks

Static
Verification

Dynamic
Checking

Debugging
with Replay

Directed
Testing

Autotuners

C&CL Compiler/Interpreter

Efficiency
Languages

Type
Systems

D
ia

gn
os

in
g

P
ow

er
/P

er
fo

rm
an

ce

11

Dominant Application Platforms

 Data Center or Cloud (“Server”)

 Laptop/Handheld (“Mobile Client”)

 Both together (“Server+ Client”)
 New ParLab-RADLab collaborations

 Par Lab focuses on mobile clients
 But many technologies apply to data center

12

Music and Hearing Application
(David Wessel)
 Musicians have an insatiable appetite for

computation + real-time demands
 More channels, instruments, more processing,

more interaction!
 Latency must be low (5 ms)
 Must be reliable (No clicks!)

1. Music Enhancer
 Enhanced sound delivery systems for home

sound systems using large microphone and
speaker arrays

 Laptop/Handheld recreate 3D sound over ear
buds

2. Hearing Augmenter
 Handheld as accelerator for hearing aid

3. Novel Instrument User Interface
 New composition and performance systems

beyond keyboards
 Input device for Laptop/Handheld

Berkeley Center for New Music and Audio
Technology (CNMAT) created a compact
loudspeaker array: 10-inch-diameter
icosahedron incorporating 120 tweeters.

Health Application: Stroke Treatment
(Tony Keaveny)

 Stroke treatment time-critical, need
supercomputer performance in hospital

 Goal: First true 3D Fluid-Solid
Interaction analysis of Circle of Willis

 Based on existing codes for distributed
clusters

14

Content-Based Image Retrieval
(Kurt Keutzer)

Relevance
Feedback

Image
Database

Query by example

Similarity
Metric

Candidate
Results Final Result

 Built around Key Characteristics of personal
databases
Very large number of pictures (> 5K)
Non-labeled images
Many pictures of few people
Complex pictures including

people, events, places, and objects

1000’s of
images

15

Robust Speech Recognition
(Nelson Morgan)

 Meeting Diarist
 Laptops/ Handhelds at meeting

coordinate to create speaker
identified, partially transcribed
text diary of meeting

Use cortically-inspired manystream spatio-temporal
features to tolerate noise

16

Parallel Browser
(Ras Bodik)
 Goal: Desktop quality browsing on handhelds

 Enabled by 4G networks, better output devices

 Bottlenecks to parallelize
 Parsing, Rendering, Scripting

0
5

10
15
20
25
30
35
40
45
50

1 2 3 4 5 6 7 8

S
p

ee
d

u
p

Hardware Contexts

Slashdot (CSS Selectors)

8 4 m s

2 m s

17

Compelling Apps in a Few Years
 Name Whisperer

 Built from Content Based Image
Retrieval

 Like Presidential Aid

 Handheld scans face of
approaching person

 Matches image database
 Whispers name in ear, along

with how you know him

Architecting Parallel Software with
Patterns (Kurt Keutzer/Tim Mattson)

Our init ial survey of many applications brought
out common recurring patterns:

“Dwarfs” -> Motifs

 Computational patterns

 Structural patterns

Insight: Successful codes have a
comprehensible software architecture:

 Patterns give human language in which to
describe architecture

19

 How do compelling apps relate to 12 motifs?

Motif (nee “Dwarf”) Popularity
(Red Hot Blue Cool)

•Pipe-and-Filter

•Agent-and-Repository

•Event-based

•Bulk Synchronous

•MapReduce

•Layered Systems

•Arbitrary Task Graphs

Decompose Tasks/Data

Order tasks Identify Data Sharing and Access

• Graph Algorithms

• Dynamic programming

• Dense/Spare Linear Algebra

• (Un)Structured Grids

• Graphical Models

• Finite State Machines

• Backtrack Branch-and-Bound

• N-Body Methods

• Circuits

• Spectral Methods

Architecting Parallel Software

Identify the Software
Structure

Identify the Key
Computations

Productivity/Efficiency and Patterns

Domain-literate programming
gurus (1% of the population).

Application
frameworks

Parallel
patterns &

programming
frameworks

+

Parallel programming gurus (1-10% of programmers)
Parallel

programming
frameworks

3

2

Domain Experts
End-user,

application
programs

Application
patterns &
frameworks

+1

The hope is for Domain Experts to create parallel code with
litt le or no understanding of parallel programming.

Leave hardcore “bare metal” efficiency-layer programming to
the parallel programming experts

22

Personal
Health

Image
Retrieval

Hearing,
Music

Speech
Parallel
Browser

Design Patterns/Motifs

Sketching

Legacy
Code

Schedulers
Communication &
Synch. Primitives

Efficiency Language Compilers

Par Lab Research Overview
Easy to write correct programs that run efficiently on manycore

Legacy OS

Multicore/GPGPU

OS Libraries & Services

ParLab Manycore/RAMP

Hypervisor

C
or

re
ct

ne
ss

Composition & Coordination Language (C&CL)

Parallel
Libraries

Parallel
Frameworks

Static
Verification

Dynamic
Checking

Debugging
with Replay

Directed
Testing

Autotuners

C&CL Compiler/Interpreter

Efficiency
Languages

Type
Systems

D
ia

gn
os

in
g

P
ow

er
/P

er
fo

rm
an

ce

Par Lab is Multi-Lingual
 Applications require ability to compose parallel code

written in many languages and several different
parallel programming models
 Let application writer choose language/model best suited to task
 High-level productivity code and low-level efficiency code
 Old legacy code plus shiny new code

 Correctness through all means possible
 Static verification, annotations, directed testing, dynamic checking
 Framework-specific constraints on non-determinism
 Programmer-specified semantic determinism
 Require common spec between languages for static checker

 Common linking format at low level (Lithe) not
intermediate compiler form
 Support hand-tuned code and future languages & parallel models

Selective Embedded Just-In-Time
Specialization (SEJITS) for Productivity
 Modern scripting languages (e.g., Python and Ruby)

have powerful language features and are easy to use

 Idea: Dynamically generate source code in C within
the context of a Python or Ruby interpreter, allowing
app to be written using Python or Ruby abstractions
but automatically generating, compiling C at runtime

 Like a JIT but
 Selective: Targets a particular method and a particular

language/platform (C+ OpenMP on multicore or CUDA on GPU)

 Embedded: Make specialization machinery productive by
implementing in Python or Ruby itself by exploiting key features:
introspection, runtime dynamic linking, and foreign function
interfaces with language-neutral data representation

Selective Embedded Just-In-Time
Specialization for Productivity
 Case Study: Stencil Kernels on AMD Barcelona, 8

threads

 Hand-coded in C+ OpenMP: 2-4 days

 SEJITS in Ruby: 1-2 hours

 Time to run 3 stencil codes:

Hand-coded
(seconds)

SEJITS
from cache
(seconds)

Extra JIT-time
1st time executed

(seconds)

0.74 0.74 0.25
0.72 0.70 0.27
1.26 1.26 0.27

Recent Results: Active Testing

 Pallavi Joshi, Chang-Seo Park,
Advisor Koushik Sen

 Problem: Concurrency Bugs

 Actively control the scheduler to force
potentially buggy schedules: Data races,
Atomicity Violations, Deadlocks

 Found parallel bugs in real OSS code: Apache
Commons Collections, Java Collections
Framework, Java Swing GUI framework, and
Java Database Connectivity (JDBC)

26

27

Autotuning for Code Generation
(Demmel, Yelick)

Search space for
block sizes
(dense matrix):
• Axes are block

dimensions
• Temperature is

speed

 Problem: generating optimal code
like searching for needle in haystack

 Manycore even more diverse

 New approach: “Auto-tuners”

 1st generate program variations of
combinations of optimizations
(blocking, prefetching, …) and data
structures

 Then compile and run to
heuristically search for best code
for that computer

 Examples: PHiPAC (BLAS), Atlas
(BLAS), Spiral (DSP), FFT-W (FFT)

Results: Making Autotuning “Auto”

 Archana Ganapathi & Kaushik Datta
 Advisors Jim Demmel and David Patterson

 Problem: need expert in architecture
and algorithm for search heuristics

 Instead, Machine Learning to Correlate
Optimizations and Performance

 Evaluate in 2 hours
vs. 6 months

 Match or Beat Expert
for Stencil Dwarfs

28

Anatomy of a Par Lab Application

Tessellat ion OS

Product ivity
Programmer

Efficiency
Programmer

Machine
Generated

System
Libraries

Legacy
Parallel
Library

Parallel
Framework

Library

Legacy
Serial
Code

Lithe Parallel Runt ime

Autotuner

Tuned Code

I nterface

Product ivity Language

High-
Level
Code

From OS to User-Level Scheduling

 Tessellation OS allocates hardware resources
(e.g., cores) at coarse-grain, and user software
shares hardware threads co-operatively using
Lithe ABI

 Lithe provides performance composability for
multiple concurrent and nested parallel libraries
 Already supports linking of parallel OpenMP code with

parallel TBB code, without changing legacy
OpenMP/TBB code and without measurable overhead

31

Wireless
radio

Memory

Media Player Network
Driver

Filesystem

Browser

Video decoder GUI

Windows
VM

De-scheduled
Partitions

Tessellation: Space-Time
partit ioning for manycore client OS

QoS Allocat ions

Par Lab Architecture
 Create a long-lived horizontal software platform for

independent software vendors (ISVs)
 ISVs won’t rewrite code for each chip or system
 Customer buys application from ISV 8 years from now, wants to run on machine

bought 13 years from now (and see improvements)

Fat
Cores

(InstLP)

Thin
Cores

(ThreadLP)

Weird
Cores

(DataLP)

Weirder
Cores

(GateLP)

System
I nterconnec

t

Not m ult iple
paradigm s of core

CoreCoreCoreCore
L2U$ / LLC slice

Scalar
(ILP)

L1D$

L1I$

Lan
e

Lan
e

Lan
e

Lan
e

Vector Unit (DLP)

Lane Lane Lane Lane

Vector-Thread
Unit (DLP+ TLP)

…instead, one type of
m ult i-paradigm core

Recent Results: RAMP Gold
 Rapid accurate simulation of

manycore architectural ideas
using FPGAs

 Init ial version models 64 cores
of SPARC v8 with shared
memory system on $750 board

Cost
Performance

(MIPS)

Simulations

per day

Software

Simulator
$2,000 0.1 - 1 1

RAMP

Gold

$2,000

+ $750
50 - 100 100

New Par Lab: Opened Dec 1, 2008
 5th Floor South Soda Hall
 Founding Partners: Intel and Microsoft

 Affiliates: National Instr., NEC, Nokia, Nvidia, Samsung

34

Recent Results: App Acceleration

 Bryan Catanzaro: Parallelizing Computer
Vision (image segmentation) using GPU

 Problem: Malik’s highest quality
algorithm is 7.8 minutes / image on a PC

 Invention + talk within Par Lab on parallelizing
phases using new algorithms, data structures
 Bor-Yiing Su, Yunsup Lee, Narayanan Sundaram,

Mark Murphy, Kurt Keutzer, Jim Demmel, and Sam Williams

 Current GPU result: 2.1 seconds / image
 > 200X speedup

 Factor of 10 quantitative change is a qualitative change

 Malik: “This will revolutionize computer vision.”

35

Par Lab’s original research “bets”
 Let compelling applications drive research agenda

 Software platform: data center + mobile client

 Identify common programming patterns

 Productivity versus efficiency programmers

 Autotuning and software synthesis

 Build correctness + power/perf. diagnostics into stack

 OS/Architecture support applications, provide primitives
not pre-packaged solutions

 FPGA simulation of new parallel architectures: RAMP

Above all, no preconceived big idea –
see what works driven by application needs

 To learn more: http: / / parlab.eecs.berekeley.edu

37

Acknowledgments
 Faculty, Students, and Staff in Par Lab
 Intel, Microsoft Par Lab founding sponsors.

National Instr., NEC, Nokia, Nvidia Samsung affiliates
 Contact me if interested in becoming Par Lab Affiliate

(pattrsn@cs.berkeley.edu)

 See parlab.eecs.berkeley.edu
 RAMP based on work of RAMP Developers:

 Krste Asanovic (Berkeley), Derek Chiou (Texas),
James Hoe (CMU), Christos Kozyrakis (Stanford),
Shih-Lien Lu (Intel), Mark Oskin (Washington),
David Patterson (Berkeley, Co-PI), and
John Wawrzynek (Berkeley, PI)

 See ramp.eecs.berkeley.edu

38

1

2

4

8

16

32

64

1

10

100

2003 2005 2007 2009 2011 2013 2015

University Target 8 cores or 100s?
 5-year research project aimed +8 year technology?
 2X cores per technology generation

 64 cores/chip in 2015 is conventional wisdom

	Overview of the UC Berkeley Par Lab
	A Parallel Revolution, Ready or Not
	2005 IT Roadmap Semiconductors
	Change in ITS Roadmap in 2 yrs
	Why might we succeed this time?
	Why might we succeed this time?
	Need a Fresh Approach to Parallelism
	Need a Fresh Approach to Parallelism
	Par Lab’s original research “bets”
	Par Lab Research Overview
	Dominant Application Platforms
	Music and Hearing Application�(David Wessel)
	Health Application: Stroke Treatment�(Tony Keaveny)
	Content-Based Image Retrieval�(Kurt Keutzer)
	Robust Speech Recognition�(Nelson Morgan) �
	Parallel Browser �(Ras Bodik)
	Compelling Apps in a Few Years
	Architecting Parallel Software with Patterns (Kurt Keutzer/Tim Mattson)
	 Motif (nee “Dwarf”) Popularity �		(Red Hot Blue Cool)
	Architecting Parallel Software
	Productivity/Efficiency and Patterns
	Par Lab Research Overview
	Par Lab is Multi-Lingual
	Selective Embedded Just-In-Time Specialization (SEJITS) for Productivity
	Selective Embedded Just-In-Time Specialization for Productivity
	Recent Results: Active Testing
	Autotuning for Code Generation�(Demmel, Yelick)
	Results: Making Autotuning “Auto”
	Anatomy of a Par Lab Application
	From OS to User-Level Scheduling
	Tessellation: Space-Time partitioning for manycore client OS
	Par Lab Architecture
	Recent Results: RAMP Gold
	New Par Lab: Opened Dec 1, 2008
	Recent Results: App Acceleration
	Par Lab’s original research “bets”
	Acknowledgments
	University Target 8 cores or 100s?

