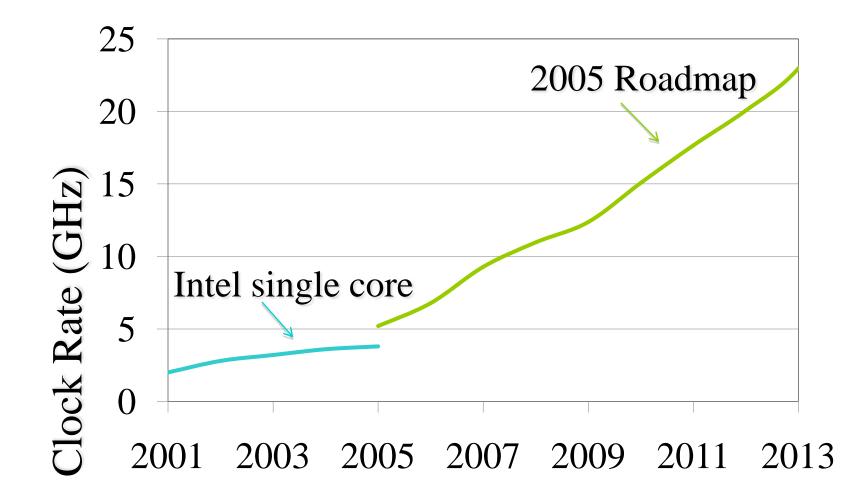


Overview of the UC Berkeley Par Lab

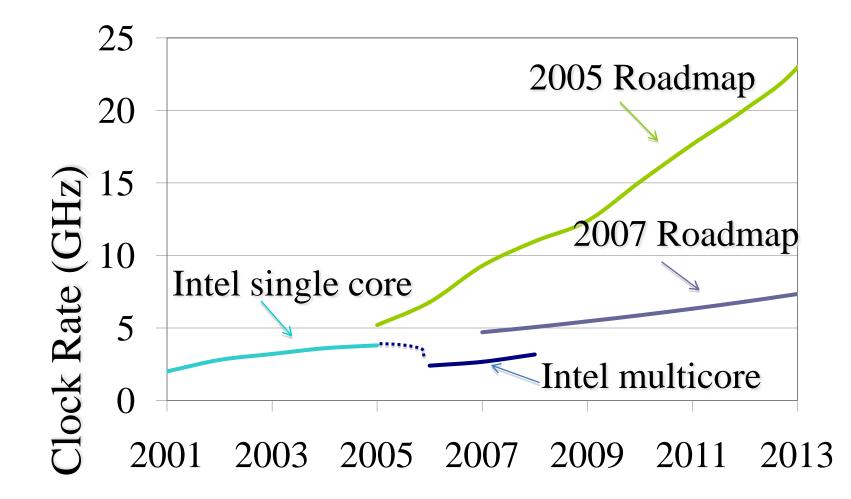
David Patterson August 2009

A Parallel Revolution, Ready or Not

□ Power Wall = Brick Wall


End of way built microprocessors for last 40 years
 Intel Pentium 4: most power/transistor inefficient CPU

- →New "Moore's Law" is 2X processors ("cores") / chip every technology generation, but ≈ same clock rate
 - "This shift toward increasing parallelism is not a triumphant stride forward based on breakthroughs ...; instead, this ... is actually a retreat from even greater challenges that thwart efficient silicon implementation of traditional solutions."


The Parallel Computing Landscape: A Berkeley View, Dec 2006

Sea change for HW & SW industries since changing the model of programming and debugging

2005 IT Roadmap Semiconductors

Change in ITS Roadmap in 2 yrs

Why might we succeed this time? No Killer Microprocessor to Save Programmers No one is building a faster serial microprocessor For programs to go faster, SW must use parallel HW New Metrics for Success vs. Linear Speedup Real Time Latency/Responsiveness and/or MIPS/Joule □ Just need some new killer parallel apps vs. all legacy SW must achieve linear speedup Necessity: All the Wood Behind One Arrow □ Whole industry committed, so more working on it If future growth of IT depends on faster processing at same price (vs. lowering costs like NetBook)

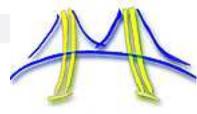
Why might we succeed this time?

- Multicore Synergy with Cloud Computing
 - Cloud Computing apps parallel even if client not parallel
- Vitality of Open Source Software
 - OSS community more quickly embraces advances?

Single-Chip Multiprocessors Enable Innovation

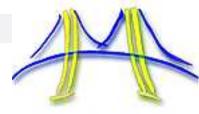
Enables inventions that were impractical or uneconomical when multiprocessors were 100s chips

□ FPGA prototypes shorten HW/SW cycle


Fast enough to run whole SW stack, can change every day vs. every 4 to 5 years when do chips

Need a Fresh Approach to Parallelism

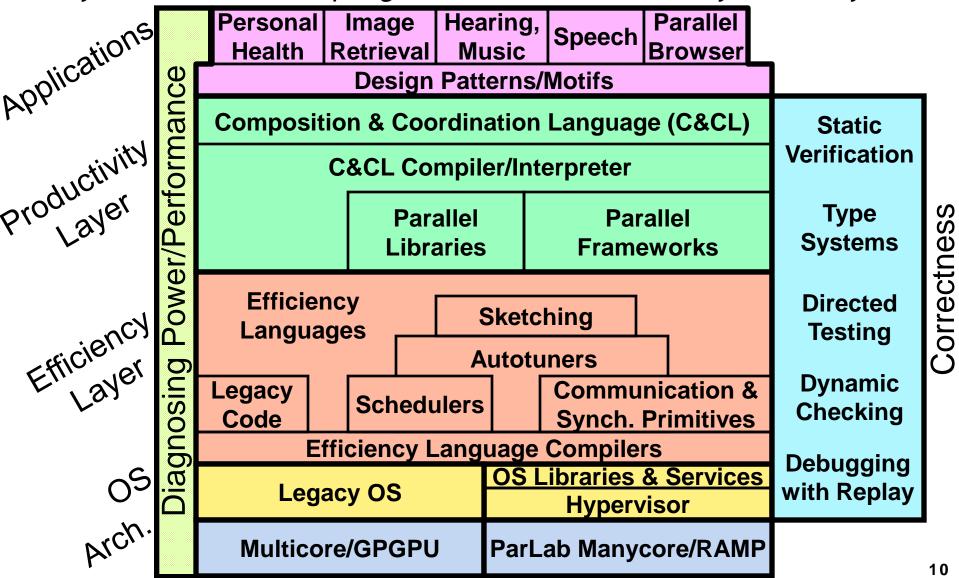
- Past parallel projects often dominated by hardware/architecture
 - This is the one true way to build computers: software must adapt to this breakthrough
 - ILLIAC IV, Thinking Machines CM-2, Transputer, Kendall Square KSR-1, Silicon Graphics Origin 2000 ...


□ Or sometimes by programming language

- This is the one true way to write programs: hardware must adapt to this breakthrough
- ID, Backus Functional Language FP, Occam, Linda, High Performance Fortran, Chapel, X10, Fortress ...
- Apps usually an afterthought

Need a Fresh Approach to Parallelism

- Berkeley researchers from many backgrounds started meeting in Feb. 2005 to discuss parallelism
 - Krste Asanovic, Ras Bodik, Jim Demmel, Kurt Keutzer, John Kubiatowicz, Dave Patterson, Koushik Sen, John Shalf, John Wawrzynek, Kathy Yelick, ...
 - Circuit design, computer architecture, massively parallel computing, computer-aided design, embedded hardware and software, programming languages, compilers, scientific programming, and numerical analysis
- Tried to learn from successes in high-performance computing (LBNL) and parallel embedded (BWRC)
- Led to "Berkeley View" Tech. Report 12/2006 and new Parallel Computing Laboratory ("Par Lab")
- □ Goal: Productive, Efficient, Correct, Portable SW for 100+ cores & scale as core increase every 2 years (!)

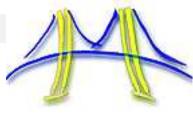

Par Lab's original research "bets"


- □ Let compelling applications drive research agenda
- □ Software platform: data center + mobile client
- Identify common programming patterns
- Productivity versus efficiency programmers
- Autotuning and software synthesis
- Build correctness + power/performance diagnostics into stack
- OS/Architecture support applications, provide primitives not pre-packaged solutions
- □ FPGA simulation of new parallel architectures: RAMP

Above all, no preconceived big idea – see what works driven by application needs

Par Lab Research Overview

Easy to write correct programs that run efficiently on manycore


Dominant Application Platforms

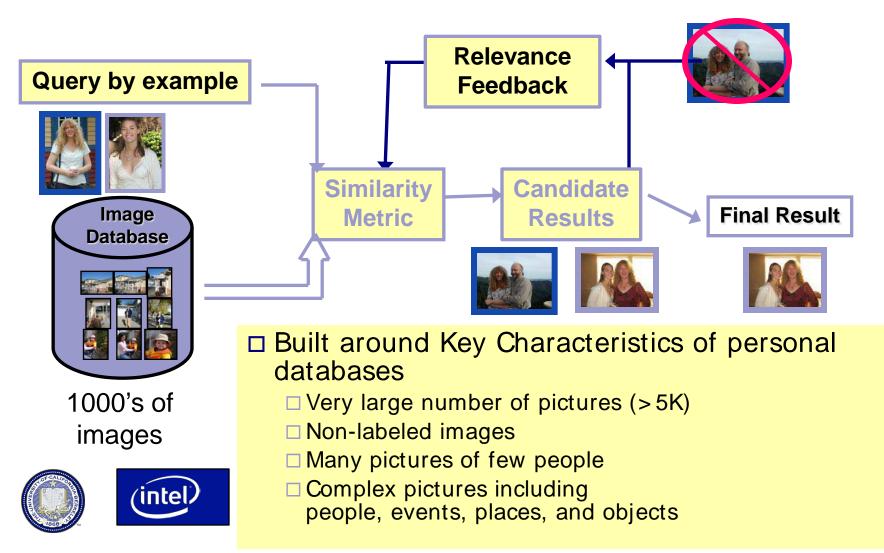
Data Center or Cloud ("Server")
 Laptop/Handheld ("Mobile Client")
 Both together ("Server+ Client")
 New ParLab-RADLab collaborations

Par Lab focuses on mobile clients
 But many technologies apply to data center

Music and Hearing Application (David Wessel)

Musicians have an insatiable appetite for computation + real-time demands

- More channels, instruments, more processing, more interaction!
- □ Latency must be low (5 ms)
- □ Must be reliable (No clicks!)
- 1. Music Enhancer
 - Enhanced sound delivery systems for home sound systems using large microphone and speaker arrays
 - Laptop/Handheld recreate 3D sound over ear buds
- 2. Hearing Augmenter
 - Handheld as accelerator for hearing aid
- 3. Novel Instrument User Interface
 - New composition and performance systems beyond keyboards
 - □ Input device for Laptop/Handheld

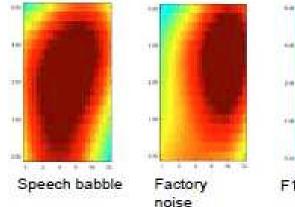

Berkeley Center for New Music and Audio Technology (CNMAT) created a compact loudspeaker array: 10-inch-diameter icosahedron incorporating 120 tweeters.

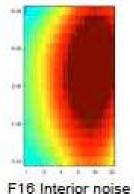
Health Application: Stroke Treatment (Tony Keaveny) Concentric 🧭 FEAP input file Athena ParMetis Partition to SMPs Athena Athena ParMetis Partition within each SMP file output materials file FEAP FEAP FEAP FEAP Bottom view of brain @ ADAM. Inc. DFEAP Stroke treatment time-critical, need **DB** file Olympus supercomputer performance in hospital Goal: First true 3D Fluid-Solid * * * * **Prometheus** Interaction analysis of Circle of Willis Visit Based on existing codes for distributed **ParMetis** PETSc clusters

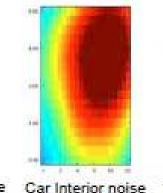
Content-Based Image Retrieval

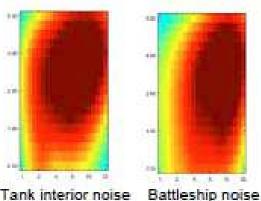
(Kurt Keutzer)

Robust Speech Recognition

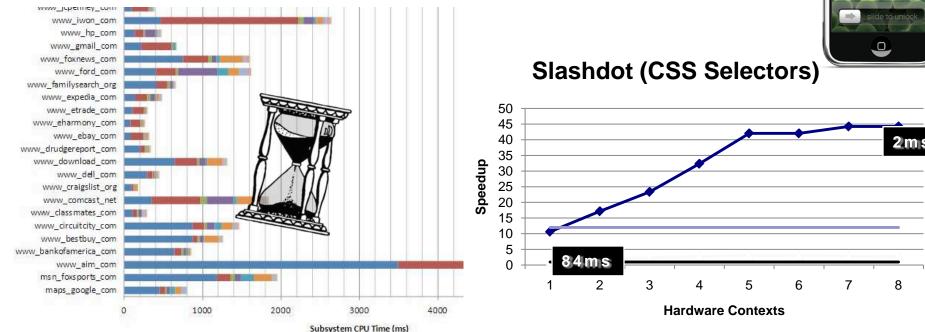

(Nelson Morgan)

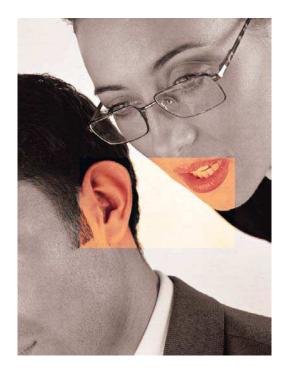

Meeting Diarist


Laptops/ Handhelds at meeting coordinate to create speaker identified, partially transcribed text diary of meeting



Use cortically-inspired manystream spatio-temporal features to tolerate noise



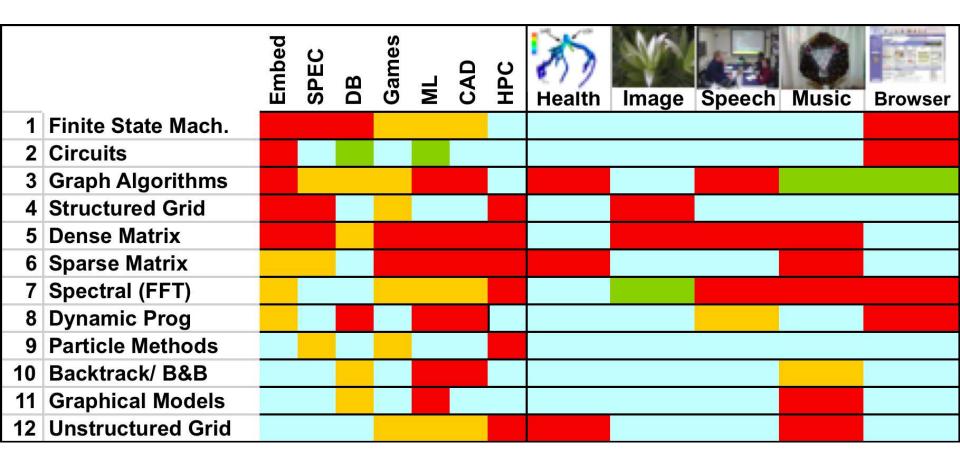

Parallel Browser
(Ras Bodik)
Goal: Desktop quality browsing on handhelds
Enabled by 4G networks, better output devices
Bottlenecks to parallelize
Parsing, Rendering, Scripting

Compelling Apps in a Few Years

- □ Name Whisperer
 - Built from Content Based Image Retrieval
 - Like Presidential Aid
- Handheld scans face of approaching person
- Matches image database
- Whispers name in ear, along with how you know him

Architecting Parallel Software with

Our initial survey of many applications brought out common recurring patterns:

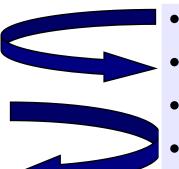

"Dwarfs" -> Motifs

- Computational patterns
- Structural patterns
- Insight: Successful codes have a comprehensible software architecture:
- Patterns give human language in which to describe architecture

Motif (nee "Dwarf") Popularity (Red Hot \ Blue Cool)

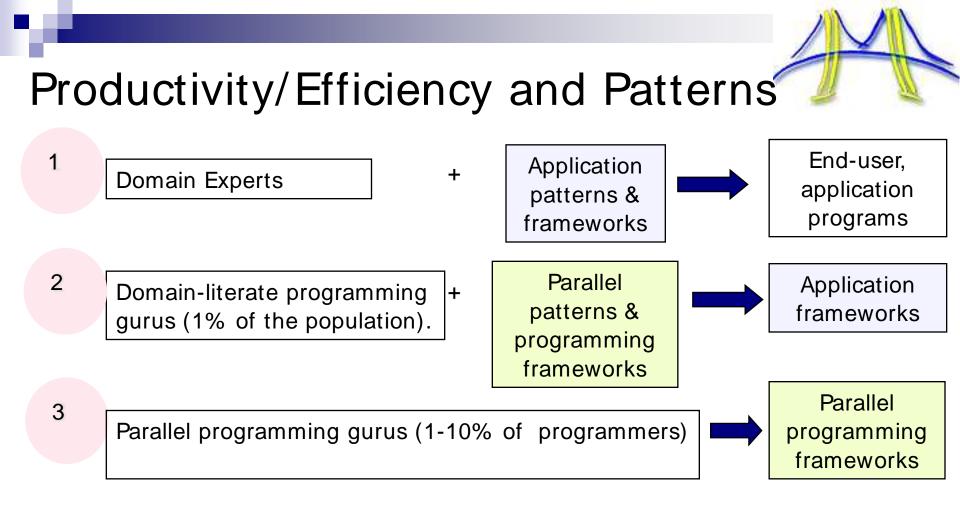
How do compelling apps relate to 12 motifs?

A


Architecting Parallel Software

Decompose Tasks/Data

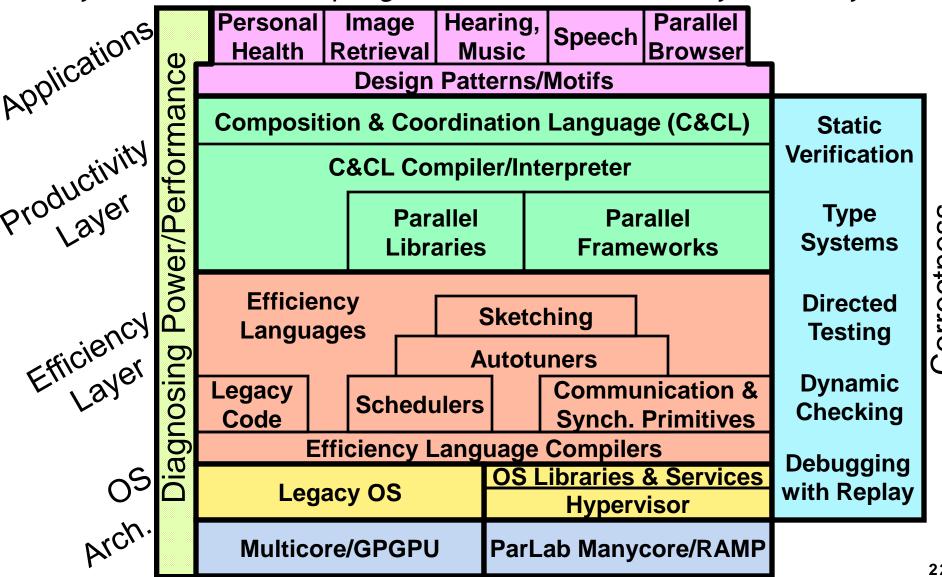
Order tasks Identify Data Sharing and Access


Identify the Software Structure

- •Pipe-and-Filter
- Agent-and-Repository
- •Event-based
- •Bulk Synchronous
- MapReduce
- Layered Systems
- •Arbitrary Task Graphs

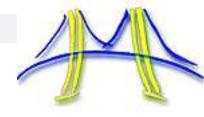
Identify the Key Computations

- Graph Algorithms
- Dynamic programming
- Dense/Spare Linear Algebra
- (Un)Structured Grids
- Graphical Models
- Finite State Machines
- Backtrack Branch-and-Bound
- N-Body Methods
- Circuits
- Spectral Methods



The hope is for Domain Experts to create parallel code with little or no understanding of parallel programming. Leave hardcore "bare metal" efficiency-layer programming to

the parallel programming experts


Par Lab Research Overview

Easy to write correct programs that run efficiently on manycore

Correctness

Par Lab is Multi-Lingual

- Applications require ability to compose parallel code written in many languages and several different parallel programming models
 - □ Let application writer choose language/model best suited to task
 - High-level productivity code and low-level efficiency code
 - □ Old legacy code plus shiny new code
- □ Correctness through all means possible
 - □ Static verification, annotations, directed testing, dynamic checking
 - □ Framework-specific constraints on non-determinism
 - Programmer-specified semantic determinism
 - □ Require common spec between languages for static checker
- Common linking format at low level (Lithe) not intermediate compiler form

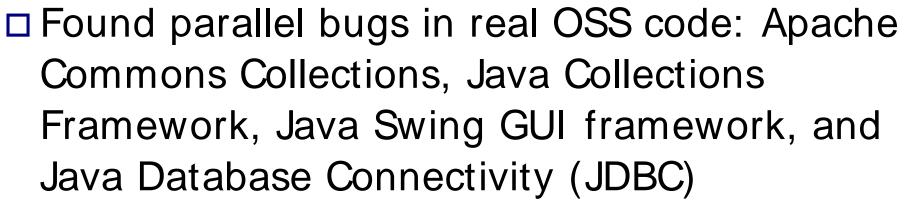
Support hand-tuned code and future languages & parallel models

Selective Embedded Just-In-Time

- Specialization (SEJITS) for Productivity
- Modern scripting languages (e.g., Python and Ruby) have powerful language features and are easy to use
- Idea: Dynamically generate source code in C within the context of a Python or Ruby interpreter, allowing app to be written using Python or Ruby abstractions but automatically generating, compiling C at runtime

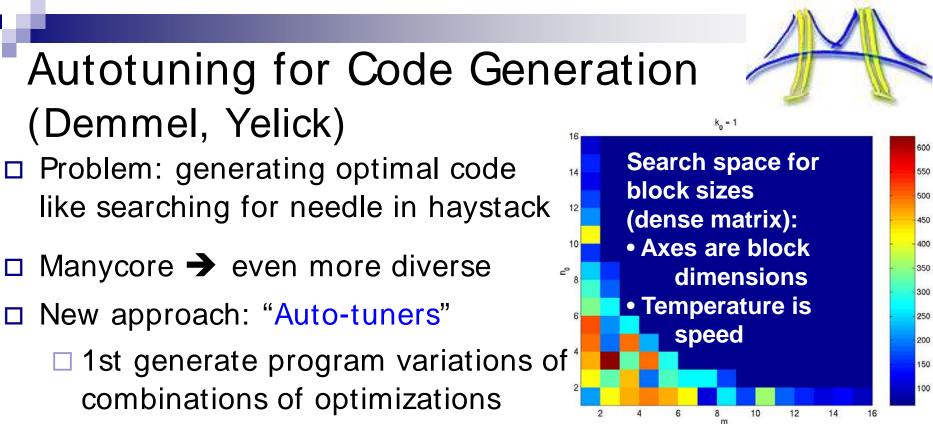
Like a JIT but

- Selective: Targets a particular method and a particular language/platform (C+ OpenMP on multicore or CUDA on GPU)
- Embedded: Make specialization machinery productive by implementing in Python or Ruby itself by exploiting key features: introspection, runtime dynamic linking, and foreign function interfaces with language-neutral data representation

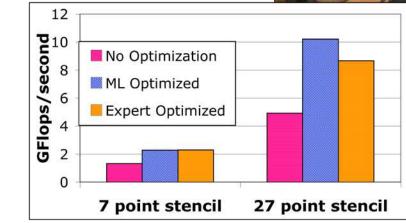

Selective Embedded Just-In-Time
 Specialization for Productivity

- Case Study: Stencil Kernels on AMD Barcelona, 8 threads
- □ Hand-coded in C+ OpenMP: 2-4 days
- □ SEJITS in Ruby: 1-2 hours

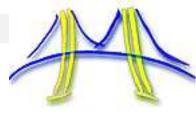
Fime to run 3 stencil codes:		Extra JIT-time
Hand-coded	from cache	1 st time executed
(seconds)	(seconds)	(seconds)
0.74	0.74	0.25
0.72	0.70	0.27
1.26	1.26	0.27


Recent Results: Active Testing

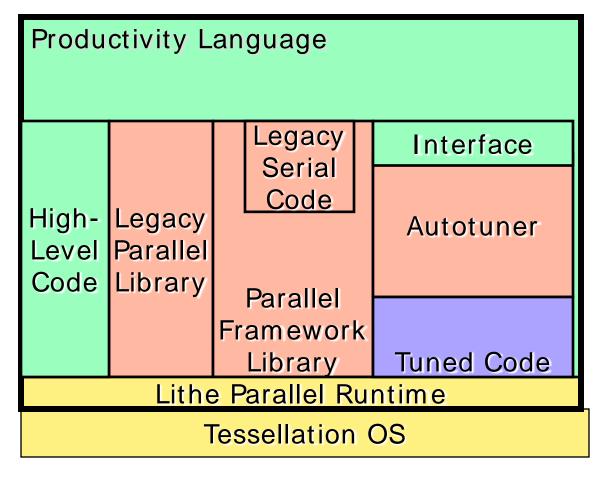
- □ Pallavi Joshi, Chang-Seo Park,
 - Advisor Koushik Sen
- Problem: Concurrency Bugs
- Actively control the scheduler to force potentially buggy schedules: Data races, Atomicity Violations, Deadlocks

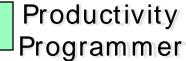

combinations of optimizations ² (blocking, prefetching, ...) and data structures

Then compile and run to heuristically search for best code for <u>that</u> computer

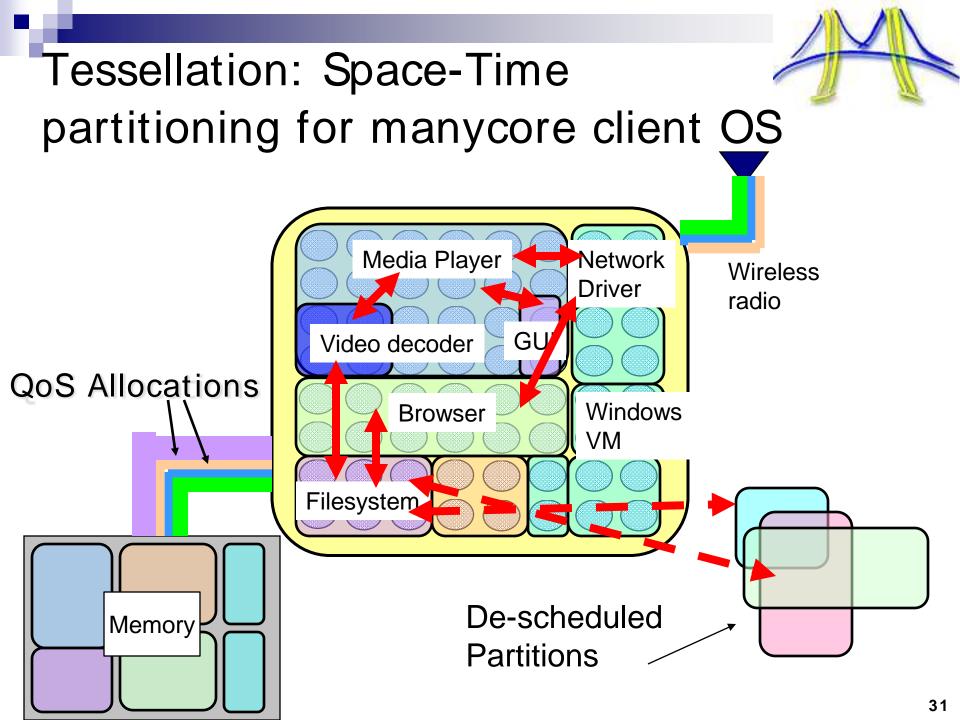

Examples: PHiPAC (BLAS), Atlas (BLAS), Spiral (DSP), FFT-W (FFT)

Results: Making Autotuning "Auto"

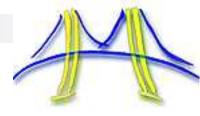

- Archana Ganapathi & Kaushik Datta
 Advisors Jim Demmel and David Patterson
- Problem: need expert in architecture and algorithm for search heuristics
- Instead, Machine Learning to Correlate Optimizations and Performance
- Evaluate in 2 hours vs. 6 months
- Match or Beat Expert for Stencil Dwarfs



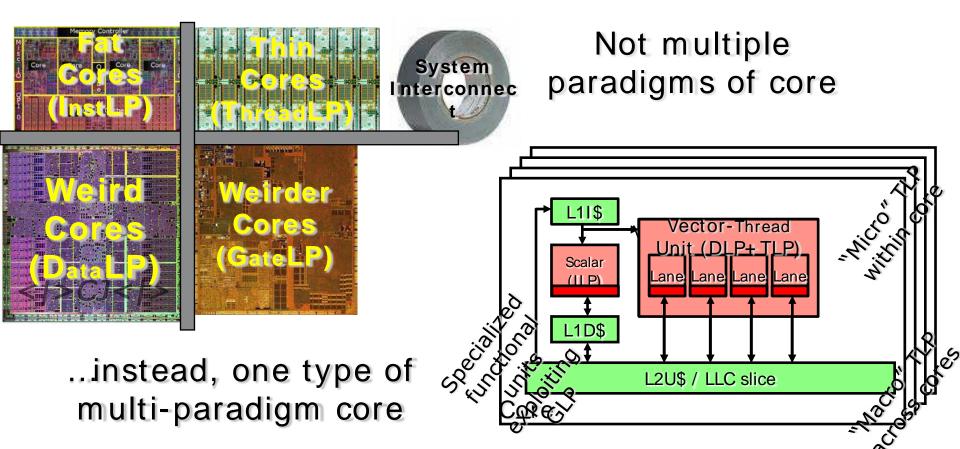
Anatomy of a Par Lab Application



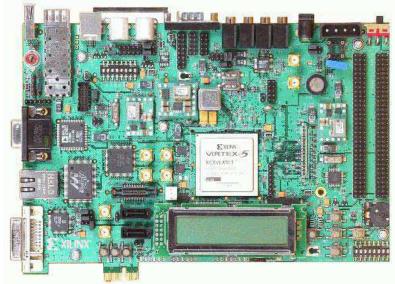
Efficiency Programmer



From OS to User-Level Scheduling


- Tessellation OS allocates hardware resources (e.g., cores) at coarse-grain, and user software shares hardware threads co-operatively using Lithe ABI
- □ Lithe provides performance composability for multiple concurrent and nested parallel libraries
 - Already supports linking of parallel OpenMP code with parallel TBB code, without changing legacy OpenMP/TBB code and without measurable overhead

Par Lab Architecture



- Create a long-lived horizontal software platform for independent software vendors (ISVs)
 - $\hfill\square$ ISVs won't rewrite code for each chip or system
 - Customer buys application from ISV 8 years from now, wants to run on machine bought 13 years from now (and see improvements)

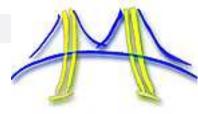
Recent Results: RAMP Gold

- Rapid accurate simulation of manycore architectural ideas using FPGAs
- Initial version models 64 cores of SPARC v8 with shared memory system on \$750 board

	Cost	Performance (MIPS)	Simulations per day
Software Simulator	\$2,000	0.1 - 1	1
RAMP Gold	\$2,000 + \$750	50 - 100	100

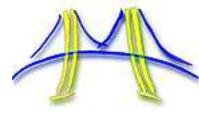
New Par Lab: Opened Dec 1, 2008 5th Floor South Soda Hall

Founding Partners: Intel and Microsoft


Affiliates: National Instr., NEC, Nokia, Nvidia, Samsung

Recent Results: App Acceleration

- Bryan Catanzaro: Parallelizing Computer Vision (image segmentation) using GPU
- Problem: Malik's highest quality algorithm is 7.8 minutes / image on a PC
- Invention + talk within Par Lab on parallelizing phases using new algorithms, data structures
 - Bor-Yiing Su, Yunsup Lee, Narayanan Sundaram, Mark Murphy, Kurt Keutzer, Jim Demmel, and Sam Williams
- Current GPU result: 2.1 seconds / image
- □ > 200X speedup
 - Factor of 10 quantitative change is a qualitative change
- Malik: "This will revolutionize computer vision."

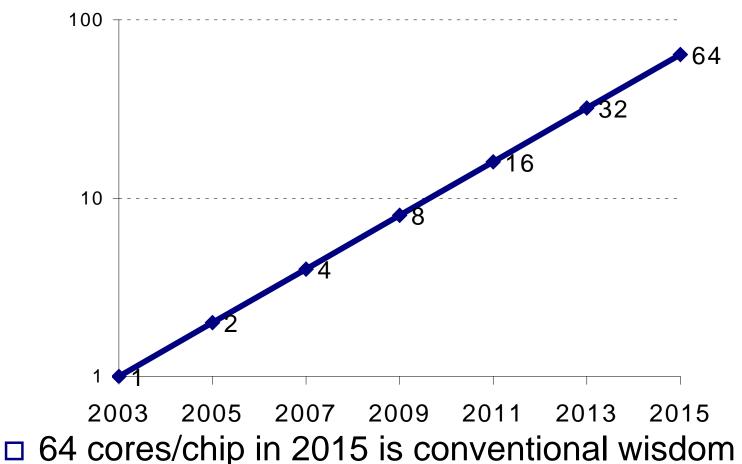

Par Lab's original research "bets"

- □ Let compelling applications drive research agenda
- □ Software platform: data center + mobile client
- Identify common programming patterns
- Productivity versus efficiency programmers
- Autotuning and software synthesis
- Build correctness + power/perf. diagnostics into stack
- OS/Architecture support applications, provide primitives not pre-packaged solutions
- □ FPGA simulation of new parallel architectures: RAMP

Above all, no preconceived big idea – see what works driven by application needs

□ To learn more: http://parlab.eecs.berekeley.edu

Acknowledgments


- □ Faculty, Students, and Staff in Par Lab
- Intel, Microsoft Par Lab founding sponsors. National Instr., NEC, Nokia, Nvidia Samsung affiliates
 - Contact me if interested in becoming Par Lab Affiliate (pattrsn@cs.berkeley.edu)
- □ See parlab.eecs.berkeley.edu
- □ RAMP based on work of RAMP Developers:

Krste Asanovic (Berkeley), Derek Chiou (Texas), James Hoe (CMU), Christos Kozyrakis (Stanford), Shih-Lien Lu (Intel), Mark Oskin (Washington), David Patterson (Berkeley, Co-PI), and John Wawrzynek (Berkeley, PI)

□ See ramp.eecs.berkeley.edu

University Target 8 cores or 100s?

5-year research project aimed +8 year technology?
 2X cores per technology generation

