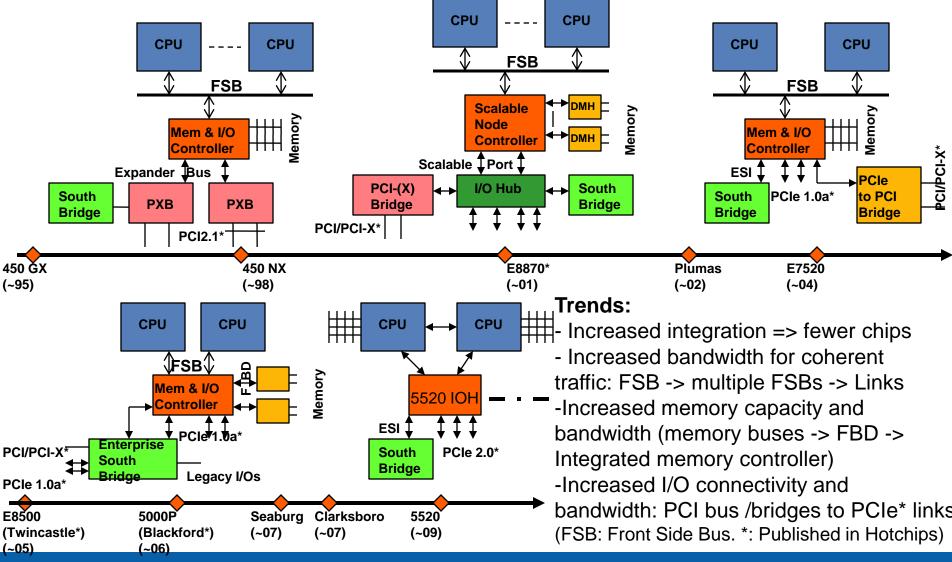
Intel[®] 5520 Chipset: An I/O Hub Chipset for Server, Workstation, and High End Desktop

Debendra Das Sharma Principal Engineer, Digital Enterprise Group Intel Corporation

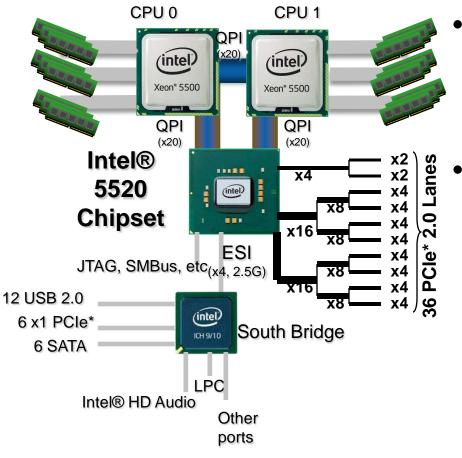
Contributors

- Nilesh Bhagat
- Rob Blankenship
- Celeste Brown
- Sam Chiang
- Ken Creta
- Debendra Das Sharma
- Hanh Hoang
- Siva Gadey Prasad
- S. Jayakrishna
- Michelle Jen
- Daniel Joe
- Chandra P Joshi
- Lily Looi
- Dean Mulla
- Sridhar Muthrasanallur
- K. Pattabhiraman
- Guru Rajamani
- Bill Rash
- Aquiles Saenz
- Rajesh Sankaran
- Miles Schwartz
- Mark R Swanson
- Patrick Tsui
- Cyprian Woo
- Robin Zhang
- and many others..



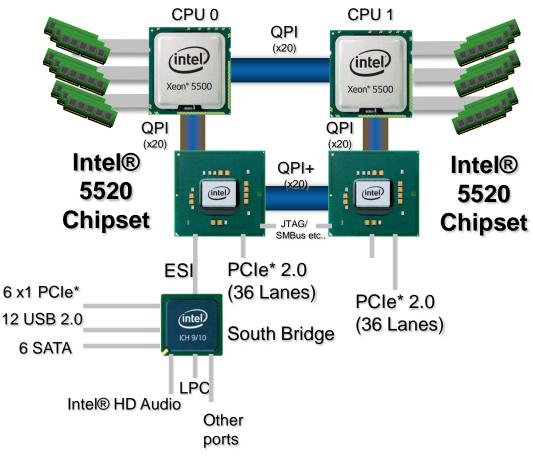
Agenda

- Platform Overview
- Feature Set
- Micro-architecture and Transaction Flows
- Performance
- Chip Statistics
- Summary



Server Chipset Evolution

Platform Overview



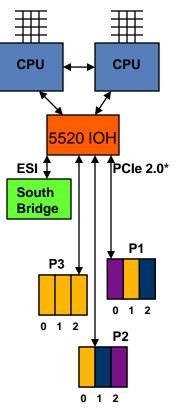
(2 CPU Sockets, Single IOH System)

- Platform Transition:
 - Front Side Bus to Intel® Quick Path Interconnect Link
 - Memory controller integrated to CPU
- Intel[®] 5520 Chipset is an I/O Hub
 - Bridge between QPI and I/O
 - First server chipset with PCIe*2.0
 - Flexible I/O with 36 PCIe* 2.0 Lanes (3 to 10 Root ports of different widths)
 - One or two CPU socket connection
 - Server and Workstation platforms
 - Customized to High-End Desktop (X58)
 - Multi-generational CPU upgrades

Dual IOH Platform

(2 Sockets, Dual IOH System)

- Increased I/O Connectivity
 - 72 PCIe* 2.0 Lanes
 - Maintains I/O flexibility
 - Workstation and server
- Two IOHs coordinate their accesses to appear as a single IOH to the CPU(s)
 - Enhanced QPI protocol in the IOH-IOH Link (e.g. Recall cache lines from other IOH to ensure forward progress)
 - Dynamic adjustment of CPU HOME resources (trackers) to ensure performance
 - One or two CPU sockets



Intel[®] Quick Path Interconnect (QPI)

- Two QPI links, each connecting to a CPU socket (or IOH)
- Differential links with forwarded clock
- Supports up to 17" channel length with two connectors
- Each QPI is 20 bits wide, up to 6.4 GT/s Data Rate
- 51.2 GB/s raw bandwidth and 31.5 GB/s of sustained real data transfer with two QPI Links at 6.4 GT/s
- CRC protection on every 80 bits along with Link level retry
- Unordered fabric for performance
- Snoopless IOH ensures CPU does not snoop IOH
 - QPI connecting IOH only used for I/O accesses
 - IOH does not remain in snoop path of CPU through upgrades

Intel[®] 5520 I/O Virtualization Features

[Assigned I/O for VMs: VM1: (P1,0), (P2,2) VM2: (P1, 1), (P2, 0), P3 VM3: (P1, 2), (P2, 1)]

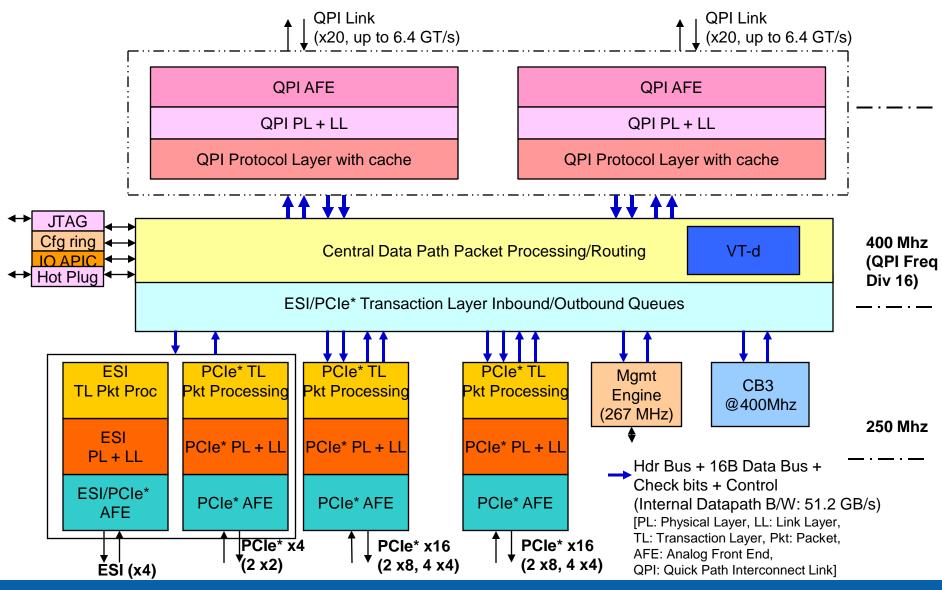
- First server chipset shipping with PCIe* I/O Virtualization

 Multiple VMM vendor (Xen, KVM, Citrix, Parallels, VMWare, etc) products enabled
- All inbound memory requests undergo VT-d (IOMMU) address translation and access privilege check
- Translation based on the requestor's BDF < Bus, Device, Function> and page address
 - Each BDF may belong to a different virtual machine (VM)
- Context Entry (2-level) and a 4-level address translation structure resident in memory
- Multi-level caching structures inside IOH
 - Context entry cache, L1/L2, L3 and IOTLB caches
 - Invalidation: Register-based and Queue-based from memory
- Supports PCI-SIG defined ATS/ACS for end-point caching and access rights check

Reliability, Availability, Serviceability (RAS)

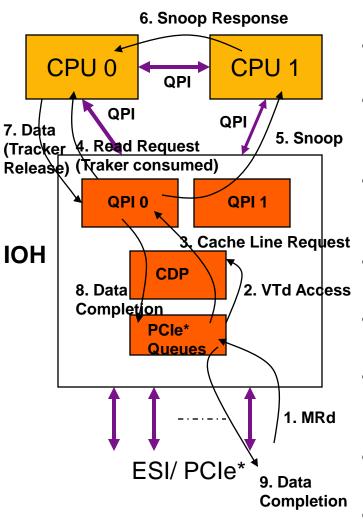
- High speed interfaces (ESI, PCIe*, QPI) are CRC protected with Link level retry
- Poison support throughout (PCIe*, ESI, QPI, internal paths)
- Internal data path mostly ECC/CRC protected
 - Configuration registers are parity protected
- Detailed error logs in each interface for each error type
- Advanced Error Reporting Structures
 - Both MSI-based as well as interrupt pin based notification
- Hot-plug support on all PCIe* Links
- Lane degradation and reversal support on PCIe*
- Live Error Recovery for guaranteed error containment
 - Can program each error type in to take the PCIe* link down
 - Example: If a device can not handle poison data, we can take that Link down rather than propagate poison to the device

Intel[®] 5520 Chipset Features

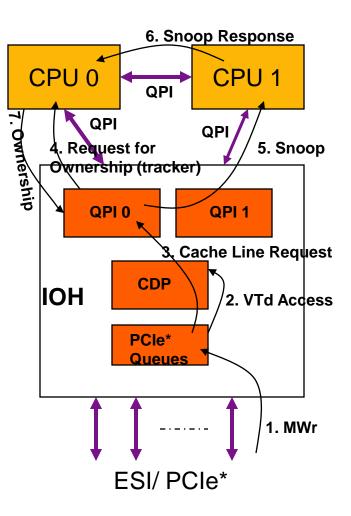

- Isochronous support on ESI for Quality of Service
 - Separate Virtual Channel for HD Audio (latency & bandwidth)
 - Separate Virtual Channel for USB (bandwidth guarantee)
- IOAPIC: I/O Advanced Programmable Interrupt Controller
 - Converts legacy interrupts to Message Signaled Interrupt
 - Avoids interrupt sharing => better for performance
- QuickData Acceleration for CPU off-load
 - DMA Move Engine w/ CRC capability: 5GB/s of bandwidth
 - Eight functions for better virtualization support
 - Direct Cache Access to CPU cores from PCIe*

• Integrated Manageability Engine for System management

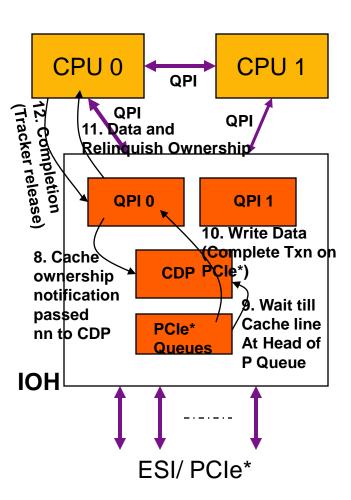
- Embedded microcontroller with encryption engine
- Sideband paths to components
- Inband PCI ports (serial port, DMA, emulated IDE, HECI)
- Separate power well



Intel[®] 5520 IOH Block Diagram


Transaction Flow Example: DMA Read

- 1. Memory Read (MRd) loaded to Queue
- 2. VTd translation and access right check
- 3. Ordering check. Packet broken to Cache line(s). Request sent to QPI0 (home in CPU0)
- 4. QPI 0: Conflict check; Check trackers; Consume tracker; Send request to CPU0
- 5. QPI 1 sends snoop request to CPU 1
- 6. CPU 1 sends snoop response to CPU0
- 7. CPU 0 sends Data Return to IOH. QPI 0 releases the tracker on receipt of Data Return
- 8. Data loaded to outbound PCIe* queue
- 9. Data completion sent out on PCIe*


DMA Write: Request for Ownership

- 1. Memory Write (MWr) loaded to queue
- 2. VTd translation and access right check. Page Walk on a miss.
- 3. Packet broken to Cache line(s). Request for Ownership (RFO) sent to QPI0 (home in CPU0). No Ordering check to pipeline RFOs
- 4. QPI 0: Conflict check; Check trackers; Consume tracker; Send request to CPU0
- 5. QPI 1 sends snoop request to CPU 1
- 6. CPU 1 sends snoop response to CPU0
- 7. CPU 0 returns the (Exclusive) Ownership of the Cache Line (without Data) to IOH

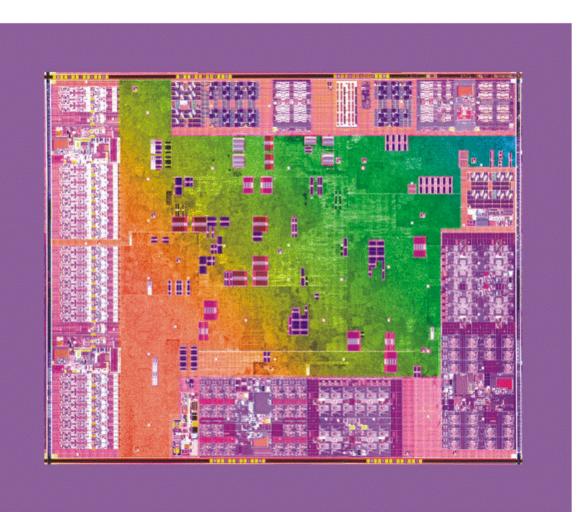
DMA Write: Writeback Phase

- 8. QPI 0: ownership notification to CDP so that it can process DMA Write
- 9. CDP waits till the posted transaction gets to the top of the posted queue, per PCIe* Ordering rules
- 10. CDP: Check with QPI to ownership still there; perform write if there; else request line again
- 11. QPI 0 performs Writeback of Data and relinquishes ownership
- 12. CPU 0 sends completion for the Writeback Transaction. Tracker released for subsequent reuse

Performance

Configuration (Single IOH)	100% Rd (GB/s)	100% Wr (GB/s)	50-50 Rd/ Wr (GB/s)
NUMA w/ 3 PCIe 2.0* cards (2 x16, 1 x4)	15.9	12.4	15.2
NUMA w/ 4 x8 PCIe 2.0* Cards	13.9	12.3	14.7
Interleaved w/ 4 x8 PCIe 2.0* Cards	14.1	12.1	14.5

- Measured results on single IOH at launch. More than 2X previous generations due to QPI as well as PCIe 2.0*
- 100% Rd B/W PCIe* limited
- 100% Wr and 50-50 RW B/W is tracker entry limited
 - Writes occupy tracker entry longer since there are two round-trips on QPI Link
 - Bandwidth expected to scale with compute capability in subsequent CPU generations due to more tracker entries from CPU
- Other details: IO Meter benchmark, 2.93 GHz 5500, QPI at 6.4 GT/s, 1333MHz RDIMM DDR3(6 x2 GB, 2 x8 channel), Request Size: 4KB, Max payload: 256B



Power

- PCIe* and ESI:
 - Active State Power Management puts idle link to low power L1 state
 - PCI* Power Management mechanisms to allow system software to manage System Sleep states (entry as well as exit)
- QPI: Support for low power L1 state on idle link
- Several power savings measures in the design (e.g., fine-grain and coarse-grain clock gating)
- System wide sleep state orchestrated with South Bridge
- Power numbers:
 - TDP: 27.1 W
 - All Links working on full speed (e.g., QPI at 6.4 GT/s and PCIe* at 5 GT/s)
 - All features and internal devices enabled
 - No active state power management benefit assumed
 - Accounts for worst possible combination of process, voltage, temperature
 - Idle power: 10 W (through system low power state)

Chip Statistics

- 65 nm process technology
- Die Size: 13.6 mm X 10.4 mm
- ~ 100 M transistors
 33x original
 - Pentium Package: FCBG
- Package: FCBGA 37.5 x 37.5 mm, 1.067 pin pitch, 10 layer
- Signal Pins: 570; total pins on package: 1295

Summary

- Intel[®] 5520 is first QPI-based chipset with PCIe^{*} 2.0
- Leadership features
 - I/O bandwidth with flexible I/O Connectivity (36 or 72 PCIe
 2.0* Lanes) for various segments
 - I/O Virtualization
 - QuickData for I/O Acceleration
 - Manageability
 - Isochrony for Quality of Service
- Designed to last multiple CPU generations on the same platform to protect customer investments

