2009: The GPU Computing Tipping Point Jen-Hsun Huang, CEO

Feb 1993

Someday, our graphics chips will have 1 TeraFLOPS of computing power, will be used for playing games to discovering cures for cancer to streaming video to millions of people connected on the Internet.

.....Right!

Performance Development

19/06/2009

http://www.top500.org/

NVIDIA Businesses

NVIDIA Technology Evolution

Performance (vs. VAX-

Co-Processing The Right Processor for the Right Tasks

NVIDIA CUDA Parallel Compute Architecture

- Many processors eventually thousands
- Latency tolerant execute 1000's of threads
- **General load/store**
- **On-chip shared-memory**
- CUDA programs scales across any size GPU

240 SP Cores

System Configuration	Fallout 3 1920x1200; 4x AA	Far Cry 2 1920x1200; 4x AA
Core i5 + GeForce GTX 275	69.1 FPS	49.6 FPS
Core i7 + GeForce GTX 275	69.8 FPS	50.7 FPS

The Next Big Thing – Physics Simulate Amazing Worlds

3D Accelerations Fixed Pipelines

GOPS

10,000

1,000

100

0.2

Programmable Shading Pipelines of Processors Computational Visualization Massive Array of Processors

ILM – Siggraph 2009 Directable, high resolution simulation of fire on the GPU

"the GPU gave us unbelievable speedups over the typical CPU. We built a GPU farm that could handle these massive simulations. What would take a day to run on a CPU, we were able to simulate in 40 minutes. The graphics processor is ideal for handling millions of instructions in splitseconds."

Tim Alexander and Robert Weaver, ILM Post July 1, 2009

Co-Processing Ideal for Ray Tracing

Co-Processing Ideal for Physics Processing

Physx by NVIDIA

Co-Processing Ideal for Molecular Dynamics

Pairlist calculation Pairlist update

> Non-bonded force calculation

Fluorescence microphotolysis Direct Coulomb Summation

1.H2

Cutoff potential summation

Huge Speed-Ups Across Many Fields

Algorithm	Field	Speedup
2-Electron Repulsion Integral	Quantum Chemistry	130X
Lattice Boltzmann	CFD	123X
Euler Solver	CFD	16X
GROMACS	Molecular Dynamics	137X
Lattice QCD	Physics	30X
Multifrontal Solver	FEA	20X
nbody	Astrophysics	100X
Simultaneous Iterative Reconstruction Technique	Computed Tomography	32X

1	Equal Performance	1
32 Tesla S1070s	31x Less Space	2000 CPU Servers
~\$400K	20x Lower Cost	~\$8M
45 kWatts	27x Lower Power	1200 kWatts

Co-Processing The Right Processor for the Right Tasks

2015 Projection

 CPU-Alone
 1.2^6
 3X

 CPU+GPU
 50 * 1.5^6
 570X

Universal Translator

Augmented Reality

GPU Computing has reached "the tipping point"