
G D l ’ G D l ’ Game Developer’s Game Developer’s
Perspect ive on OpenCLPerspect ive on OpenCLp pp p

Eric Schenk, EA
A t 2009

© Copyright Electronic Arts, 2009 - Page 1

August 2009

Motivat ionMotivat ion

© Copyright Electronic Arts, 2009 - Page 2

Motivat ion
• Supports a variety of compute resources
- CPUs, GPUs, SPUs, accelerators
- Unifies programming for devices that have very different environmentsUnifies programming for devices that have very different environments
- Provides uniform interface to non-fixed platforms (e.g. PC/Mac)

© Copyright Electronic Arts, 2009 - Page 3

Motivat ion
• Open standard
- Many vendors will support directly
- Potential for 3rd party implementations if no vendor supportPotential for 3rd party implementations if no vendor support
- Embedded platform support in spec

© Copyright Electronic Arts, 2009 - Page 4

Motivat ion
• Concurrent programming model
- Command queue(s) per device with support for

dependencies across queuesdependencies across queues
- Data parallel and SIMD support in a portable notation,
- superior to intrinsics

Low level programming model minimalist abstractions- Low-level programming model, minimalist abstractions

© Copyright Electronic Arts, 2009 - Page 5

How to apply How to apply OpenCLOpenCL to gamesto games

© Copyright Electronic Arts, 2009 - Page 6

How to apply OpenCL to games
• Don’t try speed up everything
- Create new content/features that use the excess compute capacity

S • Some cases are easy
- We already parallelize them

• Some cases are harder• Some cases are harder
- But with OpenCL it will be easier to try them.

© Copyright Electronic Arts, 2009 - Page 7

Dodging Amdahl’s Law
• Amdahl’s Law
- “The speedup of a program using multiple processors is limited by the

sequential fraction of the program” sequential fraction of the program

• So, massively parallel hardware has limited benefit?

• No• No
- The game already runs on today’s hardware.
- More compute power => add more content/features.

G h 100’ 1000’ f l i h - Games have 100’s or 1000’s of algorithms to target.

• OpenCL makes the coding easier

© Copyright Electronic Arts, 2009 - Page 8

The “Easy” cases
• Rendering
- Rasterization / shading already runs on graphics hardware
- Visibility cullingVisibility culling
- Procedural geometry

• Codec decompressionp
- Animation, audio, video, etc.

• Animation blending

• Audio mixing

• Rigid body physics integrationg y p y g

• Some collision calculations

• Etc

© Copyright Electronic Arts, 2009 - Page 9

• Etc.

Then it gets harder…
• AI
- Path finding
- Search

P tt t hi- Pattern matching
- Fuzzy logic / neural nets for AI
- Massive scale AI behavior on multiple actors
- Speculative AI paths- Speculative AI paths

• Animation
- High level motion planning

Detailed crowd simulation with individual behaviors- Detailed crowd simulation with individual behaviors

• Physics
- Broad phase collision systems
- Character to character interaction
- High quality liquid/smoke.

• Asset creation

© Copyright Electronic Arts, 2009 - Page 10

- Landscape, vegetation, architecture, etc.

Early ExperiencesEarly Experiences

© Copyright Electronic Arts, 2009 - Page 11

Early Experiences
• Too early to tell you about shipped game code

• We have done some feasibility experiments

• Skate 2 Cloth Experiment
- Pulls the character skinning and cloth physics out of EA’s Skate 2 and

embeds it into a stand alone demoembeds it into a stand alone demo

• Goal:
- Exercise OpenCL on “real” code- Exercise OpenCL on real code
- Extract game subsystem and port key algorithms to OpenCL
- Leave intact as much original code and API as possible

© Copyright Electronic Arts, 2009 - Page 12

What does it do?
• Play back recorded skeleton poses

• Skin character model to pose

• Apply cloth physics to portion of the skinned model
- Integrator for gravity

Particle to particle spring system- Particle-to-particle spring system
- Constrained to underlying skinned model

• Render via OpenGLRender via OpenGL

© Copyright Electronic Arts, 2009 - Page 13

Demo Task Graph
• Simple sequential execution graph

• In-order, data parallel tasks

• Render inputs are double buffered to OpenCL tasks
could, in theory, begin prior to render completion

© Copyright Electronic Arts, 2009 - Page 14

Enqueue Instead of Execute
• In original code each box represents a function call

• Demo abstracts OpenCL kernel invocations as
functors
- Functors take an event parameter to be dependent on, and return their

own eventown event
- Functors enqueue a kernel—upon return the kernel may not have

completed or even begun

© Copyright Electronic Arts, 2009 - Page 15

EnqueueEnqueue Instead of ExecuteInstead of Execute
f• A function like this
this->TCVIntegrate(dt, deltaPos);

Became an enqueue functor call like this• Became an enqueue functor call like this

if (mIntegratorFunc != NULL)
event = (*mIntegratorFunc)(event, dt, deltaPos);(g)(, ,);

• The original code remains as a fallback, slightly modified
else {

this->LockBuffers();
this->TCVIntegrate(dt, deltaPos);
this->UnlockBuffers();this >UnlockBuffers();

}

© Copyright Electronic Arts, 2009 - Page 16

Memory Objects
• Original data was organized in aligned arrays of structs

• cl_mem objects were created for each array
- CL_MEM_USE_HOST_PTR to avoid additional allocations and

copying (when using CPU device)
- OpenGL vertex buffers allocated by GL and bound to OpenCL via p y p

GL/CL interop

© Copyright Electronic Arts, 2009 - Page 17

Data Flow Through Kernels

© Copyright Electronic Arts, 2009 - Page 18

Complete Command Queue
• Buffer write used to move data into pose buffer

• Acquire / release to give OpenCL access to GL buffers

© Copyright Electronic Arts, 2009 - Page 19

Kernels
• Skinning
- Generates vertex buffer and drivers from pose

I t t• Integrator
- Acceleration due to gravity

• Distance constraint• Distance constraint
- Springs between cloth particles

• Driver constraintDriver constraint
- Keeps cloth near underlying ‘skin’

• Writeback
- Output cloth positions to vertex buffer

© Copyright Electronic Arts, 2009 - Page 20

Vectorizat ion
• Wrote two variants of each kernel: Scalar and vector
- Some hardware does much better with SIMD code

• “Structure of Arrays” (SoA) style math
Memory data layout unchanged rearranged at load/store- Memory data layout unchanged, rearranged at load/store
- AoS float4 contains “xyzw”; SoA float4 contains “xxxx”

• Two key techniques employed: Transpose and select

© Copyright Electronic Arts, 2009 - Page 21

4x4 Transpose
• Used to convert between AoS and SoA

• Four float4 AoS values loaded into one float16

• Post transpose the four float4 parts are SoA

float16 transpose (float16 m)
{
float16 t;
t even = m lo; t odd = m hi;t.even = m.lo; t.odd = m.hi;
m.even = t.lo; m.odd = t.hi;
return m;

}

© Copyright Electronic Arts, 2009 - Page 22

Select vs. Branch
• Branching is bad, for many reasons

• select(a,b,c) efficiently chooses between “a” and “b” based on
“c” element wise fashionc element-wise fashion

• Comparisons like isgreater(a,b) are set up to output to “c”

© Copyright Electronic Arts, 2009 - Page 23

Scalar IntegratorScalar Integrator
id f i t t (i t Id fl t4 fl t4void perform_integrator (int pIdx, float4 vsr, float4 acc,

float dt, __global Particle* particles,
__global short* indices, __global IntegratorState *iState)
{{

float4 curPos, curPrevPos, nextPos;
curPos = particles[pIdx].mPos;
curPrevPos = particles[pIdx].mPrevPos;
float vsr = (1 0f ctp >mVerticalSpeedDampening);float vsr = (1.0f - ctp->mVerticalSpeedDampening);
// TIME CORRECTED VERLET
// xi+1 = xi + (xi - xi-1)*(dti/dti-1) + a*dti* dti
if ((indices[pIdx]) >= 0 && (curPrevPos.w > 0.0f)) {

nextPos = curPos;
nextPos -= curPrevPos;
nextPos *= dt / iState->mLastDT;
nextPos y *= vsr;nextPos.y *= vsr;
nextPos += acc;
particles[pIdx].mPrevPos = curPos;
particles[pIdx].mPos = curPos + nextPos;

© Copyright Electronic Arts, 2009 - Page 24

}
}

Vector IntegratorVector Integrator
id f i (void perform_vector_integrator (

float4 vdt_ratio,
float4 acc,
int numparticles,p ,
int pIdx,
__global Particle *ptrParticle,
__global uint *mapped)

{{
// load 4 particle positions and previous positions
// transpose particles from Aos -> SoA
// extract locked flags for particles
// TIME CORRECTED VERLET:
// xi+1 = xi + (xi - xi-1) * (dti / dti-1)
// + a * dti * dti
// select between unchanged (if locked)// select between unchanged (if locked)
// and new location (if not locked)
// transpose SoA -> AoS
// store particles back

}

© Copyright Electronic Arts, 2009 - Page 25

}

Vector IntegratorVector Integrator
// l d i l i i d i i i// load particle position and previous position
float16 curPos, curPrevPos;
curPos.s0123 = ptrParticle[0].mPos;
curPrevPos s0123 = ptrParticle[0] mPrevPos;curPrevPos.s0123 = ptrParticle[0].mPrevPos;
curPos.s4567 = ptrParticle[1].mPos;
curPrevPos.s4567 = ptrParticle[1].mPrevPos;
curPos.s89ab = ptrParticle[2].mPos;curPos.s89ab ptrParticle[2].mPos;
curPrevPos.s89ab = ptrParticle[2].mPrevPos;
curPos.scdef = ptrParticle[3].mPos;
curPrevPos.scdef = ptrParticle[3].mPrevPos;

// transpose particles from Aos -> SoA
curPos = transpose(curPos);
curPrevPos = transpose(curPrevPos);

// extract locked flags for particles
i t4 k (i t4)i t (P P d f

© Copyright Electronic Arts, 2009 - Page 26

uint4 mask = (uint4)isgreater(curPrevPos.scdef,
(float4)0.0f) & ~ComputeMappedMask(mapped);

Vector IntegratorVector Integrator
//// TIME CORRECTED VERLET
float4 next_x = ((curPos.s0123 - curPrevPos.s0123) *

vdt_ratio + (curPos.s0123 + acc.x));
float4 next y = ((curPos.s4567 - curPrevPos.s4567) * _y (()

vdt_ratio + (curPos.s4567 + acc.y));
float4 next_z = ((curPos.s89ab - curPrevPos.s89ab) *

vdt_ratio + (curPos.s89ab + acc.z));

// select between unchanged (if locked)
// and new location (if not locked)
curPrevPos.s0123 = select(

curPrevPos.s0123, curPos.s0123, mask);
curPrevPos.s4567 = select(

curPrevPos.s4567, curPos.s4567, mask);
curPrevPos.s89ab = select(curPrevPos.s89ab select(

curPrevPos.s89ab, curPos.s89ab, mask);
curPos.s0123 = select(curPos.s0123, next_x, mask);
curPos.s4567 = select(curPos.s4567, next_y, mask);

89 b l (89 b k)

© Copyright Electronic Arts, 2009 - Page 27

curPos.s89ab = select(curPos.s89ab, next_z, mask);

Vector IntegratorVector Integrator
//// transpose SoA -> AoS
curPos = transpose(curPos);
curPrevPos = transpose(curPrevPos);

// store particles back
ptrParticle[0].mPos = curPos.s0123;

t P ti l [0] P PptrParticle[0].mPrevPos =
curPrevPos.s0123;
ptrParticle[1].mPos = curPos.s4567;

ptrParticle[1].mPrevPos =ptrParticle[1].mPrevPos
curPrevPos.s4567;
ptrParticle[2].mPos = curPos.s89ab;

ptrParticle[2].mPrevPos =
P P 89 bcurPrevPos.s89ab;

ptrParticle[3].mPos = curPos.scdef;
ptrParticle[3].mPrevPos =

curPrevPos.scdef;

© Copyright Electronic Arts, 2009 - Page 28

curPrevPos.scdef;

Work-I tems and Workgroups
• Data parallel model in OpenCL is based on work-items
- Each work-item is given its own index (in up to three dimensions)
- Work-items are organized into uniformly sized “workgroups”

W k i i li it d b d i d k l- Workgroup size is limited by device and kernel

• Work-items in a workgroup execute in parallel and share
- Local memoryy
- Barriers
- Fences

© Copyright Electronic Arts, 2009 - Page 29

Per Kernel Index Space
• This demo’s kernels are all in one-dimensional spaces

• Each kernel uses its own space
- Skinning: Complete vertex array
- Integrator: Particle array
- Driver constraint: Driver arrayy
- Distance constraint: Constraints array
- Writeback: Clothed portion of vertex array

© Copyright Electronic Arts, 2009 - Page 30

Distance Constraint: Limited Paralle lism

• Each distance constraint modifies two particles
- Modifying a particle from multiple constraints concurrently gives

incorrect results

• Original constraints organized into “octets”
- Eight-at-once is far too few to keep GPU busy- Eight-at-once is far too few to keep GPU busy

© Copyright Electronic Arts, 2009 - Page 31

CPU Device PerformanceCPU Device Performance

S l DP V t DP
Host Scalar Task

Scalar DP
(8 Cores)

Vector DP
(8 Cores)

Overall 1.00 2.72 17.03 17.27

Skinning 1.00 2.98 20.98 20.98*
Integrator 1.00 1.53 1.48 1.10 teg ato 00 53 8 0
Distance 1.00 1.34 2.54 2.69

Driver 1.00 1.14 5.58 8.83
WriteBack 1 00 1 01 7 26 7 26* WriteBack 1.00 1.01 7.26 7.26

*No vector version available

© Copyright Electronic Arts, 2009 - Page 32

GPU Device PerformanceGPU Device Performance

B t CPU U ti i d
Host

Best CPU
(8 Cores)

Unoptimized
GTX285

Overall 1.00 17.27 4.11

Skinning 1.00 20.98 4.39
Integrator 1.00 1.53 1.10 teg ato 00 53 0
Distance 1.00 2.69 0.74

Driver 1.00 8.83 3.24
WriteBack 1 00 7 26 17 69 WriteBack 1.00 7.26 17.69

© Copyright Electronic Arts, 2009 - Page 33

Optimizat ions – Algorithmic
• Each distance constraint modifies two particles
- Modifying a particle from multiple constraints concurrently gives

incorrect resultsincorrect results.
- Original algorithm allows for at most eight particles in a work-group.

This cripples GPU performance.

• Reordering constraints to maximize the workgroup
size (7x) improved kernel performance dramatically

• Limited by algorithm,
- Alternatives should be investigated

© Copyright Electronic Arts, 2009 - Page 34

Optimizat ions – Work per Task
• Larger simultaneous data set sizes provide the GPU
with substantially more work

CPU benefits as well but drops off with larger data sets- CPU benefits as well, but drops off with larger data sets

• Real game: Process all characters as a single batch

D Si l t li ti (25)• Demo: Simple geometry replication (25x)

© Copyright Electronic Arts, 2009 - Page 35

Optimizat ions – Bandw idth
• Memory access is crucial in bandwidth limited kernels
(and most will be bandwidth limited)

• GL/CL integration

• CL_MEM_COPY_HOST_PTR for GPU

• Current GPU memory controllers are optimized for a y p
specific set of memory access patterns

© Copyright Electronic Arts, 2009 - Page 36

GPU Memory and Execut ion Optimizat ion
• Burst reads from memory are essential

• Bursts only happen on sequential accesses

• Bursts are created by coalescing smaller reads

• Can only coalesce 4-, 8-, or 16-byte readsy , , y

• Coalesces across work-items in a workgroup

• Solution: Optimized transfer from global to local
memory then operate on local memorymemory, then operate on local memory

• This pattern must currently be explicitly coded for

© Copyright Electronic Arts, 2009 - Page 37

GPU Memory and Execut ion Optimizat ionGPU Memory and Execut ion Optimizat ion

Local memory
Kernel barriers
Kernel fences

4 5 6 70 1 2 3 8 9 10 114

0

5

1

6

2

7

3

0

0

1

1

2

2

3

3

8

0

9

1

10

2

11

3

Buffer of 80-byte vertex structs
(5 x 16-byte float4)

© Copyright Electronic Arts, 2009 - Page 38

GPU Memory and Execut ion Optimizat ionGPU Memory and Execut ion Optimizat ion

Local memory
Kernel barriers
Kernel fences

4 5 6 70 1 2 3 8 9 10 114

0

5

1

6

2

7

3

0

0

1

1

2

2

3

3

8

0

9

1

10

2

11

3

Buffer of 80-byte vertex structs
(5 x 16-byte float4)

© Copyright Electronic Arts, 2009 - Page 39

GPU Memory and Execut ion Optimizat ionGPU Memory and Execut ion Optimizat ion

Local memory
Kernel barriers
Kernel fences

4 5 6 70 1 2 3 8 9 10 114

0

5

1

6

2

7

3

0

0

1

1

2

2

3

3

8

0

9

1

10

2

11

3

Buffer of 80-byte vertex structs
(5 x 16-byte float4)

© Copyright Electronic Arts, 2009 - Page 40

GPU Memory and Execut ion Optimizat ionGPU Memory and Execut ion Optimizat ion

Local memory
Kernel barriers
Kernel fences

4 5 6 70 1 2 3 8 9 10 114

0

5

1

6

2

7

3

0

0

1

1

2

2

3

3

8

0

9

1

10

2

11

3

Buffer of 80-byte vertex structs
(5 x 16-byte float4)

© Copyright Electronic Arts, 2009 - Page 41

GPU Memory and Execut ion Optimizat ionGPU Memory and Execut ion Optimizat ion

Local memory
Kernel barriers
Kernel fences

4 5 6 70 1 2 3 8 9 10 114

0

5

1

6

2

7

3

0

0

1

1

2

2

3

3

8

0

9

1

10

2

11

3

Buffer of 80-byte vertex structs
(5 x 16-byte float4)

© Copyright Electronic Arts, 2009 - Page 42

GPU Device PerformanceGPU Device Performance

Host
Best CPU
(8 Cores)

Unoptimized
GTX285

Optimized
GTX285

Overall 1 17.27 4.11 45.15

Skinning 1 20.98 4.39 83.56
Integrator 1 1 53 1 1 4 6Integrator 1 1.53 1.1 4.6
Distance 1 2.69 0.74 1.73
Driver 1 8.83 3.24 14.45
W it B k 1 7 26 17 69 56 6WriteBack 1 7.26 17.69 56.6

© Copyright Electronic Arts, 2009 - Page 43

Performance SummaryPerformance Summary
• Performance tuning is

essential

• Performance Performance
characteristics are not
hidden by abstraction
layerlayer

• Expect to write
multiple variations and
choose empirically at
runtime

© Copyright Electronic Arts, 2009 - Page 44

