
OpenCLfor

Chris Lamb

NVIDIA <A NVIDIA.

Outline

® OpenCL on NVIDIA GPUs
® Best Practices
® Demos

OpenCL on NVIDIA GPUs

® OpenCL is a great match
® Direct correlation to the HW execution model
® Direct correlation to the HW memory model
® Direct correlation to the HW synchronization model

® Based on NVIDIA’s mature GPU computing infrastructure
® Compilesto PTX ISA
* Profiling signals and instrumentation
* Drivers and full SDK available since May
* Available to all professional developers/researchers today

® Supported on hundreds of millions of CUDA -enabled
GPUs already in the market

NVIDIA 10-Series Architecture

® 240 Streaming Processor (SP) cores

execute HW threads
® 30 Streaming Multiprocessors (SMs)

each of which contain:

® s

-threaded streaming processors

Scalar
Processors

OO0

__u_u_u_u r.__u_u _H_
[[_ LDDD
BBEENL] %

memory that enables work -item cooperation

~—~~

% _u_u_u_u _u_u_u_u
T DDDD DDDD
) DDDD DDDD
0 =

=

C >

- _u_u_u_u _u_u_u_u

DDDD DDDD

c [[[[[[
S o [o [_H_ [[[[_H_
= 2

o .Y

c O

S0

L s

8 o

O o O

o -5 D

o o w

v © c

N -)

OpenCL Execution Model on NVIDIA

Software Hardware
3 -
_ Scalar
Work-item Processor

QR

Work-group _
Multiprocessor

NDRange Device

» Work-items are executed by streaming
processors

» Maps directly to HW managed threads

» Work-groups are executed on
multiprocessors

* They do not migrate

» Several concurrent work-groups can reside
on one multiprocessor - limited by
multiprocessor resources

» A kernel is launched as an N-D Range of
work-groups

» Work-groups are dynamically load-
balanced by HW scheduler

OpenCL Memory Model on NVIDIA

Software Hardware » Each hardware thread has a dedicated
__private region for stack
[]
_ Scalar
__private Processor

« Each multiprocessor has dedicated storage

22222222 for __local memory and __constant caches
« Work-items running on a multiprocessor
local and can communicate through __local memory
"~ constant Multiprocessor

* All work-groups on the device can

22222 22222 22222 access __global memory

» Atomic operations allow powerful forms
__global Device of global communication

OpenCL Synchronization on NVIDIA
Software Hardware
0 -

Scalar
mem_fence() Processor
atom_*()

Q&

barrier() |
work_group_copy() Multiprocessor

EngqueueNDRange Device
cl_event

* Independent atomic operations and
memory system control

» Write collective operations in a
familiar C-style

« Single instruction fast barrier support
directly in HW

* Collective operations leverage the entire
multi-processor

 Direct HW support for scheduling
NDRange grids

 Direct HW support for scheduling
enqueued commands using cl_events

Outline

® OpenCL on NVIDIA GPUs
® Best Practices
® Demos

Scalar Architecture

® NVIDIA GPUs have a scalar architecture
® Use vector types in OpenCL for convenience, not
performance

® Generally want more work -items rather than large
vectors per work -item

® Optimize performance by overlapping memory
accesses with HW computation

® High arithmetic intensity programs (i.e. high ratio of math
to memory transactions)

® Many concurrent work -items

Take Advantage of local Memory
® Lundreds of times faster than __global memory

® Work -items can cooperate via ___local memory

® barrier() only needs CLK LOCAL MEM_FENCE, which is
much lower overhead

® Useitto manage locality

® Stage loads and stores in shared memory to optimize
reuse

Optimize Memory Access

® Assess locality of __global memory access patterns
® qw coalescing of accesses within 128 -byte memory blocks
® st order performance effect

® Optimize for spatial locality of accesses in cached
texture memory (OpenCL Images)

¢ Image reads may benefit from processing as 2D blocks

Experiment with work -group aspect ratio to discover what's
best

® e OpenCL allocate memory optimally
® CL MEM_ALLOC HOST PTR
® The implementation can optimize alignment and location

Can still get access for the host via
clEnqueueMap{Buffer|lmage }

Transfer/Compute Overlap

® Separate command queues can always overlap
Can use this to overlap transfer and compute
Generally best when transfer and compute time is balanced
Most useful when data has high reuse

® Ordirectly pass ALLOC HOST memory to kernel
Uses GPUs latency hiding to ensure maximal bus usage
Generally best when data has low/no reuse
No events needed to synchronize between copy and kernel

Use Parallelism Efficiently

® partition your computation to keep the GPU
multiprocessors equally busy
® Many work -items, many work -groups
® work- groups >> number of Compute Units
® 556-512 work -items per work -group a good target

® Keep resource usage low enough to support
multiple active work -groups per multiprocessor

® Registers, _local memory can reduce available
parallelism

® Use Occupancy Calculator tool to help estimate

Math Library and Compiler

® Use native_* and half * math functions where possible

¢ Many have a direct mapping to hardware ISA

® Canbe orders of magnitude faster than higher precision
variants
® Note that half_* functions do not mean the FP16 type extension

® Use the -cl-mad-enable compiler option
® Permits use of FMADSs, which can lead to large performance
gains

® Investigate using the -cl-fast-relaxed -math compiler

option
® enables many aggressive compiler optimizations

Outline

® OpenCL on NVIDIA GPUs
® Best Practices
® Demos

OpenCL Profiler Overview

* Profiler facilitates analysis and optimization of
OpenCL programs by:
* Reporting hardware counter values:
Number of various bus transactions
Branches

Effective Parallelism
Etc.

* Computing per kernel statistics:
Effective instruction throughput
Effective memory throughput

* Visually displaying time spent in various GPU calls
* Requires no instrumentation of the source code

OpenCL Profiler Exam

Time profile of GPU operations

“unt'i{led_ = 0pé|1éL ‘..Fié.ualnpro_fi.l_er --.[S_ession1 -.De_\n:ce-_l;.'l = d:mtext_(ﬁ

%y File Session Wiew Options Window Help

» oy G = 7 —
Dw b @ =
Sessions & X | profiler Output Summary Table GPL Time Summary Plot GPU Time Height Flot (2 | GPU Time Width Plat
= | . Il ekl i L i
= Device_0
Contexk_0

Height Plot

=1 memcpyDtalr

1 memcpyDtoDasync
B memcpyDioH

= memcpyHtal

=1 memcpyHtoDasyno
mm memcpyHioH

= memcpyHtoHasync
B CPU Time Cverhead

g |
Method @ memepyHEioHasync
Method Number @ 49
GPU Time : 1655954
CPU Tirme: 16892.94

1 &
Method Mumber:

OpenCL Profiler Sample Uses

* Determining whether kernel performance is bound
by instruction or memory throughput

* Determining whether performance is limited by
kernel execution or data transfer times

* Determining percentage of the application time
spent in each kernel

= untitled - OpenCL Visual Profiler

|Fi|Ee Session Miew Opkions Window Help

D) @6 B

= B
Prafier Cutput Sy Table

Methad

Ocean Simulation Overview

® Based on Jerry Tenssendorf’'s paper
“Simulating Ocean Water”
® Statistic based, not physics based

* Generate wave distribution in frequency domain, the n perform
inverse FFT

* Widely used in movie CGls since 90s, and in games since 2000s

®* |n movie CGI: The size of height map is large
* Titanic, 2048x2048
* Water World, 2048x2048

®* |n games: The size of height map is small
* Crysis, 64x64
®* Resistance 2, 32x32
* All simulated on CPU (or Cell SPE)

The Algorithm: Wave Composition

® The ocean surface Is
composed by enormous
simple waves

® Each sine wave is a hybrid
sine wave (Gerstner wave)
® A mass point on the

surface is doing vertical
circular motion

Performance Issues

* The simulation is required to generate the
displacement map in real -time

® Computing FFT on CPU becomes the bottleneck
when the displacement map gets larger

® Larger texture also takes longer time on CPU -GPU data transfer

* However, large displacement map is a must -have for detailed wave
crests

* GPU computing is really good at FFT

® Multiple 512x512 transforms can be performed in trivial time
on high -end GPUs

® Demo uses multiple 1024x1024 transforms, clearly
affordable for high quality real -time rendering

Ocean Simulation Demo

developer.nvidia. com/page/regrstered developer program html

<A NVIDIA,

GPU Technology Conference

Sept 30 — Oct 2, 2009 — The Fairmont San Jose, California

The most significant event in 2009 dedicated to
application development on the GPU

Opportunities:

» Call for Submissions open
for talks, tutorials, panels,

Learn about the seismic shifts happening in birds of a feather, posters
. and moderated roundtables
computing

Preview disruptive technologies and emerging > Sponsors / Exhibitors have
applications to stay ahead of imminent trends a variety of options to reach

influential decision makers
Get tools/techniques to impact mission critical

GPU correrence

i Startup Showcase _
projects now » Startup Showcase
_ Present your company and
= - Network with experts and peers from across several technology to potential

= industries investors

Event focused on developers, engineers, researchers, senior executives, venture capitalists,
press and analysts

nvidia.com/gtc oo ANVIDIA

	OpenCL for �NVIDIA GPUs
	Outline
	OpenCL on NVIDIA GPUs
	NVIDIA 10-Series Architecture
	OpenCL Execution Model on NVIDIA
	OpenCL Memory Model on NVIDIA
	OpenCL Synchronization on NVIDIA
	Outline
	Scalar Architecture
	Take Advantage of __local Memory
	Optimize Memory Access
	Transfer/Compute Overlap
	Use Parallelism Efficiently
	Math Library and Compiler
	Outline
	OpenCL Profiler Overview
	OpenCL Profiler Example
	OpenCL Profiler Sample Uses
	Ocean Simulation Overview
	The Algorithm: Wave Composition
	Performance Issues
	Ocean Simulation Demo
	Slide Number 23
	Slide Number 24

