
OpenCL for
NVIDIA GPUs

Chris Lamb
NVIDIA

Outline

OpenCL on NVIDIA GPUs
Best Practices
Demos

OpenCL on NVIDIA GPUs

OpenCL is a great match
Direct correlation to the HW execution model
Direct correlation to the HW memory model
Direct correlation to the HW synchronization model

Based on NVIDIA’s mature GPU computing infrastructure
Compiles to PTX ISA
Profiling signals and instrumentation
Drivers and full SDK available since May
Available to all professional developers/researchers today

Supported on hundreds of millions of CUDA -enabled
GPUs already in the market

240 Streaming Processor (SP) cores
execute HW threads
30 Streaming Multiprocessors (SMs)
each of which contain:

8 multi -threaded streaming processors
2 Special Function Units (SFUs)
1 double precision unit
Shared memory that enables work -item cooperation

Scalar
Processors

Shared
Memory

Double

NVIDIA 10-Series Architecture

OpenCL Execution Model on NVIDIA

Software Hardware
• Work-items are executed by streaming
processors

• Maps directly to HW managed threads

Work-item
Scalar

Processor

Work-group
Multiprocessor

• Work-groups are executed on
multiprocessors

• They do not migrate

• Several concurrent work-groups can reside
on one multiprocessor - limited by
multiprocessor resources

...

NDRange Device

• A kernel is launched as an N-D Range of
work-groups

• Work-groups are dynamically load-
balanced by HW scheduler

OpenCL Memory Model on NVIDIA

Software Hardware
• Each hardware thread has a dedicated
__private region for stack

__private
Scalar

Processor

__local and
__constant Multiprocessor

• Each multiprocessor has dedicated storage
for __local memory and __constant caches

• Work-items running on a multiprocessor
can communicate through __local memory

...

__global Device

• All work-groups on the device can
access __global memory

• Atomic operations allow powerful forms
of global communication

OpenCL Synchronization on NVIDIA

Software Hardware
• Independent atomic operations and
memory system control

• Write collective operations in a
familiar C-stylemem_fence()

atom_*()

Scalar
Processor

barrier()
work_group_copy() Multiprocessor

• Single instruction fast barrier support
directly in HW

• Collective operations leverage the entire
multi-processor

...

EnqueueNDRange
cl_event

Device

• Direct HW support for scheduling
NDRange grids

• Direct HW support for scheduling
enqueued commands using cl_events

Outline

OpenCL on NVIDIA GPUs
Best Practices
Demos

Scalar Architecture

NVIDIA GPUs have a scalar architecture
Use vector types in OpenCL for convenience, not
performance
Generally want more work -items rather than large
vectors per work -item

• Optimize performance by overlapping memory
accesses with HW computation

High arithmetic intensity programs (i.e. high ratio of math
to memory transactions)
Many concurrent work -items

Take Advantage of __local Memory

Hundreds of times faster than __global memory

Work -items can cooperate via __local memory
barrier() only needs CLK_LOCAL_MEM_FENCE, which is
much lower overhead

Use it to manage locality
Stage loads and stores in shared memory to optimize
reuse

Optimize Memory Access

Assess locality of __global memory access patterns
HW coalescing of accesses within 128 -byte memory blocks
1st Order performance effect

Optimize for spatial locality of accesses in cached
texture memory (OpenCL Images)

Image reads may benefit from processing as 2D blocks
Experiment with work -group aspect ratio to discover what’s
best

Let OpenCL allocate memory optimally
CL_MEM_ALLOC _HOST_PTR
The implementation can optimize alignment and location
Can still get access for the host via
clEnqueueMap{Buffer|Image }

Transfer/Compute Overlap

Separate command queues can always overlap
Can use this to overlap transfer and compute
Generally best when transfer and compute time is balanced
Most useful when data has high reuse

Or directly pass ALLOC _HOST memory to kernel
Uses GPUs latency hiding to ensure maximal bus usage
Generally best when data has low/no reuse
No events needed to synchronize between copy and kernel

Use Parallelism Efficiently

Partition your computation to keep the GPU
multiprocessors equally busy

Many work -items, many work -groups
work- groups >> number of Compute Units
256-512 work -items per work -group a good target

Keep resource usage low enough to support
multiple active work -groups per multiprocessor

Registers, __local memory can reduce available
parallelism
Use Occupancy Calculator tool to help estimate

Math Library and Compiler

Use native_* and half_* math functions where possible
Many have a direct mapping to hardware ISA

Can be orders of magnitude faster than higher precision
variants
Note that half_* functions do not mean the FP16 type extension

Use the -cl -mad-enable compiler option
Permits use of FMADs, which can lead to large performance
gains

Investigate using the -cl -fast -relaxed -math compiler
option

enables many aggressive compiler optimizations

Outline

OpenCL on NVIDIA GPUs
Best Practices
Demos

OpenCL Profiler Overview

Profiler facilitates analysis and optimization of
OpenCL programs by:

Reporting hardware counter values:
Number of various bus transactions
Branches
Effective Parallelism
Etc.

Computing per kernel statistics:
Effective instruction throughput
Effective memory throughput

Visually displaying time spent in various GPU calls

Requires no instrumentation of the source code

OpenCL Profiler Example
Time profile of GPU operations

OpenCL Profiler Sample Uses

Determining whether kernel performance is bound
by instruction or memory throughput
Determining whether performance is limited by
kernel execution or data transfer times
Determining percentage of the application time
spent in each kernel

Ocean Simulation Overview

Based on Jerry Tenssendorf’s paper
“Simulating Ocean Water”

Statistic based, not physics based
Generate wave distribution in frequency domain, the n perform
inverse FFT
Widely used in movie CGIs since 90s, and in games since 2000s

In movie CGI: The size of height map is large
Titanic, 2048x2048
Water World, 2048x2048

In games: The size of height map is small
Crysis, 64x64
Resistance 2, 32x32
All simulated on CPU (or Cell SPE)

The Algorithm: Wave Composition

The ocean surface is
composed by enormous
simple waves

Each sine wave is a hybrid
sine wave (Gerstner wave)

A mass point on the
surface is doing vertical
circular motion

Performance Issues

The simulation is required to generate the
displacement map in real -time
Computing FFT on CPU becomes the bottleneck
when the displacement map gets larger

Larger texture also takes longer time on CPU -GPU data transfer
However, large displacement map is a must -have for detailed wave
crests

GPU computing is really good at FFT
Multiple 512x512 transforms can be performed in trivial time
on high -end GPUs
Demo uses multiple 1024x1024 transforms, clearly
affordable for high quality real -time rendering

Ocean Simulation Demo

nvidia.com/opencl
developer.nvidia.com/page/registered_developer_program.html

NVIDIA Confidential

GPU Technology Conference
Sept 30 – Oct 2, 2009 – The Fairmont San Jose, California

The most significant event in 2009 dedicated to
application development on the GPU

Learn about the seismic shifts happening in
computing
Preview disruptive technologies and emerging
applications to stay ahead of imminent trends
Get tools/techniques to impact mission critical
projects now
Network with experts and peers from across several
industries

Opportunities:

 Call for Submissions open
for talks, tutorials, panels,
birds of a feather, posters
and moderated roundtables

 Sponsors / Exhibitors have
a variety of options to reach
influential decision makers

 Startup Showcase
Present your company and
technology to potential
investors

Event focused on developers, engineers, researchers, senior executives, venture capitalists,
press and analysts

nvidia.com/gtc

	OpenCL for �NVIDIA GPUs
	Outline
	OpenCL on NVIDIA GPUs
	NVIDIA 10-Series Architecture
	OpenCL Execution Model on NVIDIA
	OpenCL Memory Model on NVIDIA
	OpenCL Synchronization on NVIDIA
	Outline
	Scalar Architecture
	Take Advantage of __local Memory
	Optimize Memory Access
	Transfer/Compute Overlap
	Use Parallelism Efficiently
	Math Library and Compiler
	Outline
	OpenCL Profiler Overview
	OpenCL Profiler Example
	OpenCL Profiler Sample Uses
	Ocean Simulation Overview
	The Algorithm: Wave Composition
	Performance Issues
	Ocean Simulation Demo
	Slide Number 23
	Slide Number 24

