
OpenCL *, Heterogeneous
Computing, and the CPU

© Intel Corporat ion, 2009

Dr. Tim Mattson
Visual Applications Research lab

Intel Corporation

* 3 rd par ty nam es are the proper ty of their ow ners

2

Agenda

• Heterogeneous com put ing in OpenCL
• Data parallelism in OpenCL
• Task parallelism in OpenCL
• Future direct ion for parallel com put ing

3

Heterogeneous com put ing

• A m odern plat form has:
– Mult i- core CPU(s)
– A GPU
– DSP processors
– … other?

• The goal should NOT be to “off- load" the CPU. We
need to m ake the best use of all the available
resources from within a single program :
– One program that runs well (i.e. reasonably close to “hand-

tuned” performance) on a heterogeneous m ixture of
processors.

GMCHGPU

I CH

CPU CPU

DRAM

GMCH = graphics m em ory cont rol hub, I CH = I nput / o utput cont rol hub

4

OpenCL: it ’s not just a GPGPU
Language
• OpenCL defines a plat form API to coordinate

heterogeneous parallel com putat ions
– Literature r ich with parallel coordinat ion languages/ API
– OpenCL unique in its abilit y to coordinate CPUs, GPUs, etc

• Key coordinat ion concepts
– Each device has its own asynchronous workqueue
– Synchronize between OCL computat ions w/ event handles

from different (or same) devices
– Enables algorithms and systems that use all available

computat ional resources
– Enqueue “nat ive funct ions” for integrat ion with C/ C+ + code

5

Agenda

• Heterogeneous com put ing in OpenCL
• Data para lle lism in OpenCL
• Task parallelism in OpenCL
• Future direct ion for parallel com put ing

6

OpenCL’s Tw o Styles of Data - Para lle lism

• Explicit SI MD data parallelism :
– The kernel defines one st ream of inst ruct ions
– Parallelism from using wide vector types
– Size vector types to match nat ive HW width
– Combine with task parallelism to exploit mult iple cores

• I m plicit SI MD data parallelism (i.e. shader-style) :
– Write the kernel as a “ scalar program”
– Use vector data types sized naturally to the algorithm
– Kernel automat ically mapped to SI MD-compute- resources

and cores by the compiler/ runt ime/ hardware.

Both approaches are viable CPU opt ions

7

Data - Para lle lism : opt ions on I A
processors
• Explicit SI MD data parallelism

– Programmer chooses vector data type (width)
– Compiler hints using at t r ibutes

– vec_type_hint (typen)

• I m plicit SI MD Data parallel
– Map onto CPUs, GPUs, Larrabee, …

– SSE/ AVX/ LRBni: 4/ 8/ 16 workitem s in parallel

• Hybrid use of the two m ethods
– AVX: can run two 4-wide workitem s in parallel
– LRBni: can run four 4-wide workitem s in parallel

8

Explicit SI MD data para lle lism
• OpenCL as a portable interface to vector inst ruct ion sets

– Block loops and pack data into vector types (float4, ushort16, etc) .
– Replace scalar ops in loops with blocked loops and vector ops.
– Unroll loops, opt im ize indexing to m atch m achine vector width

float a[N], b[N], c[N];
for (i=0; i<N; i++)

c[i] = a[i]*b[i];

<<< the above becomes >>>>

float4 a[N/4], b[N/4], c[N/4];
for (i=0; i<N/4; i++)

c[i] = a[i]*b[i];

Explicit SI MD data para lle lism m eans you tune your code to the
vector w idth and other proper t ies of the com pute de vice

9 * Results have been est imated based on internal I ntel analysis and are provided for
informat ional purposes only. Any difference in system hardware or software design or

configurat ion may affect actual performance.

Explicit SI MD data para lle lism : Case Study

1 w ork - item per core + loops

Vector ize (block loops, pack
into ushor t8 and ushor t1 6)

Opt im ize vector index ing

Unroll loops

Hand - tuned SSE +
Mult ithreading

4 0 %

1 8 6 %

2 3 %

% peak per form ance

3 Ghz dual core CPU
pre - re lease version of OpenCL
Source: I nte l Corp.

5 %

• Video cont rast / color opt im izat ion kernel on a dual core CPU

Good new s: OpenCL code 9 5 % of hand - tuned SSE/ MT per f.

Bad new s: New pla t form , redo a ll those opt im izat ion s.

1 0 0 %2 0 %

5 %

S
u

cc
e

ss
iv

e
 i

m
p

ro
ve

m
e

n
t

1 0

Tow ards “Por table” Per form ance

• The following C code is an
exam ple of a Bilateral 1D filter:

• Rem inder: Bilateral filter is an
edge preserving im age
processing algorithm .

• See m ore inform at ion here:
ht tp: / / scien.stanford.edu/ class/ psych221/
projects/ 06/ im agescaling/ bilat i.htm l

void P4_Bilateral9 (int start, int end, float v)

{

int i, j, k;

float w[4], a[4], p[4];

float inv_of_2v = -0.5 / v;

for (i = start; i < end; i++) {

float wt[4] = { 1.0f, 1.0f, 1.0f, 1.0f };

for (k = 0; k < 4; k++)

a[k] = image[i][k];

for (j = 1; j <= 4; j++) {

for (k = 0; k < 4; k++)

p[k] = image[i - j*SIZE][k] - image[i][k];

for (k = 0; k < 4; k++)

w[k] = exp (p[k] * p[k] * inv_of_2v);

for (k = 0; k < 4; k++) {

wt[k] += w[k];

a[k] += w[k] * image[i - j*SIZE][k];

}

}

for (j = 1; j <= 4; j++) {

for (k = 0; k < 4; k++)

p[k] = image[i + j*SIZE][k] - image[i][k];

for (k = 0; k < 4; k++;

w[k] = exp (p[k] * p[k] * inv_of_2v);

for (k = 0; k < 4; k++) {

wt[k] += w[k];

a[k] += w[k] * image[i + j*SIZE][k];

}

}

for (k = 0; k < 4; k++) {

image2[i][k] = a[k] / wt[k];

}

}

}

http://scien.stanford.edu/class/psych221/projects/06/imagescaling/bilati.html�
http://scien.stanford.edu/class/psych221/projects/06/imagescaling/bilati.html�

1 1

Tow ards “Por table” Per form ance

• The following C code is an
exam ple of a Bilateral 1D filter:

• Rem inder: Bilateral filter is an
edge preserving im age
processing algorithm .

• See m ore inform at ion here:
ht tp: / / scien.stanford.edu/ class/ psych221/
projects/ 06/ im agescaling/ bilat i.htm l

void P4_Bilateral9 (int start, int end, float v)

{

int i, j, k;

float w[4], a[4], p[4];

float inv_of_2v = -0.5 / v;

for (i = start; i < end; i++) {

float wt[4] = { 1.0f, 1.0f, 1.0f, 1.0f };

for (k = 0; k < 4; k++)

a[k] = image[i][k];

for (j = 1; j <= 4; j++) {

for (k = 0; k < 4; k++)

p[k] = image[i - j*SIZE][k] - image[i][k];

for (k = 0; k < 4; k++)

w[k] = exp (p[k] * p[k] * inv_of_2v);

for (k = 0; k < 4; k++) {

wt[k] += w[k];

a[k] += w[k] * image[i - j*SIZE][k];

}

}

for (j = 1; j <= 4; j++) {

for (k = 0; k < 4; k++)

p[k] = image[i + j*SIZE][k] - image[i][k];

for (k = 0; k < 4; k++;

w[k] = exp (p[k] * p[k] * inv_of_2v);

for (k = 0; k < 4; k++) {

wt[k] += w[k];

a[k] += w[k] * image[i + j*SIZE][k];

}

}

for (k = 0; k < 4; k++) {

image2[i][k] = a[k] / wt[k];

}

}

}

void P4_Bilateral9 (int start, int end, float v)

{

<<< Declarations >>>

for (i = start; i < end; i++) {

for (j = 1; j <= 4; j++) {

<<< a series of short loops >>>>

}

for (j = 1; j <= 4; j++) {

<<< a 2nd series of short loops >>>

}

}

}

http://scien.stanford.edu/class/psych221/projects/06/imagescaling/bilati.html�
http://scien.stanford.edu/class/psych221/projects/06/imagescaling/bilati.html�

1 2

“I m plicit SI MD” data para lle l code

• “outer” loop replaced
by work- items
running over an
NDRange index set

• NDRange 4* image
size … since each
workitem does a
color for each pixel

• Leave it to the
compiler to map
work- items onto
lanes of the vector
units …

__kernel void P4_Bilateral9 (__global float * inIm age, __global float * out Im age, float v)

{

const size_t m yID = get_global_id(0) ;

const float inv_of_2v = -0.5f / v;

const size_t m yRow = m yID / IMAGE_WIDTH;

size_t m axDistance = m in(DISTANCE, m yRow) ;

m axDistance = m in(m axDistance, IMAGE_HEIGHT - m yRow) ;

float currentPixel, neighborPixel, newPixel;

float diff;

float accum ulatedWeights, currentWeights;

newPixel = currentPixel = inIm age[m yID] ;

accum ulatedWeights = 1.0f;

for (size_t dist = 1; dist < = m axDistance; + + dist)

{

neighborPixel = inIm age[m yID + dist * IMAGE_WIDTH] ;

diff = neighborPixel - currentPixel;

currentWeights = exp(diff * diff * inv_of_2v) ;

accum ulatedWeights + = currentWeights;

newPixel + = neighborPixel * currentWeights;

neighborPixel = inIm age[m yID - dist * IMAGE_WIDTH] ;

diff = neighborPixel - currentPixel;

currentWeights = exp(diff * diff * inv_of_2v) ;

accum ulatedWeights + = currentWeights;

newPixel + = neighborPixel * currentWeights;

}

out Im age[m yID] = newPixel / accum ulatedWeights;

}

1 3

• “outer” loop replaced
by work- items
running over an
NDRange index set .

• NDRange 4* image
size … since each
workitem does a
color for each pixel.

• Leave it to the
compiler to map
work- items onto
lanes of the vector
units …

“I m plicit SI MD” data para lle l code
__kernel void P4_Bilateral9 (__global float * inIm age, __global float * out Im age, float v)

{

const size_t m yID = get_global_id(0) ;

const float inv_of_2v = -0.5f / v;

const size_t m yRow = m yID / IMAGE_WIDTH;

size_t m axDistance = m in(DISTANCE, m yRow) ;

m axDistance = m in(m axDistance, IMAGE_HEIGHT - m yRow) ;

float currentPixel, neighborPixel, newPixel;

float diff;

float accum ulatedWeights, currentWeights;

newPixel = currentPixel = inIm age[m yID] ;

accum ulatedWeights = 1.0f;

for (size_t dist = 1; dist < = m axDistance; + + dist)

{

neighborPixel = inIm age[m yID + dist * IMAGE_WIDTH] ;

diff = neighborPixel - currentPixel;

currentWeights = exp(diff * diff * inv_of_2v) ;

accum ulatedWeights + = currentWeights;

newPixel + = neighborPixel * currentWeights;

neighborPixel = inIm age[m yID - dist * IMAGE_WIDTH] ;

diff = neighborPixel - currentPixel;

currentWeights = exp(diff * diff * inv_of_2v) ;

accum ulatedWeights + = currentWeights;

newPixel + = neighborPixel * currentWeights;

}

out Im age[m yID] = newPixel / accum ulatedWeights;

}

_ _ kernel void p4 _ bila tera l9 (_ _ global f loat * inI m age ,
_ _ global f loat * out I m age, f loat v)

{
const size_ t m yI D = get_ global_ id(0) ;

< < < declarat ions > > >

for (size_ t dist = 1 ; dist < = m axDistance; + + dist) {

ne ighborPixe l = inI m age[m yI D +
dist * I MAGE_ W I DTH] ;

diff = ne ighborPixe l - currentPixe l;

currentW eights = exp(diff * diff * inv_ of_ 2 v) ;

< < plus others to com pute pixe ls, w eights, e tc > >

accum ulatedW eights + = currentW eights;
}
out I m age[m yI D] = new Pixe l / accum ulatedW eights;

}

1 4

Portable Per form ance in OpenCL

• I m plicit SI MD code … where the fram ework m aps
work- item s onto the “ lanes of the vector unit ” …
creates the opportunity for portable code that
perform s well on full range of OpenCL com pute
devices

• Requires m ature OpenCL technology that “ knows”
how to do this:
– … But it is important to note …. we know this approach

works since its based on the way shader compilers work
today

1 5

Agenda

• Heterogeneous com put ing in OpenCL
• Data parallelism in OpenCL
• Task para lle lism in OpenCL
• Future direct ion for parallel com put ing

1 6

Task Para lle lism Overview

• Think of a task as an asynchronous funct ion call
– “Do X at some point in the future”
– Opt ionally “… after Y is done”
– Light weight , often in user space

• St rengths
– Copes well with heterogeneous workloads
– Doesn’t require 1000’s of st rands
– Scales well with core count

• Lim itat ions
– No automat ic support for latency hiding
– Must explicit ly write SI MD code

X()

Y()

A natura l f it to m ult i - core CPUs

1 7

Task Para lle lism in OpenCL

• clEnqueueTask
– I magine “sea of different tasks” execut ing concurrent ly
– A task “owns the core” (i.e., a workgroup size of 1)

• Use tasks when algorithm …
– Benefits from large amount of local/ pr ivate memory
– Has predictable global memory accesses
– Can be programmed using explicit vector style
– “Just doesn’t have 1000’s of ident ical things to do”

• Use data-parallel kernels when algorithm …
– Does not benefit from large amounts of local/ pr ivate

memory
– Has unpredictable global memory accesses
– Needs to apply same operat ion across large number of data

elements

1 8

Agenda

• Heterogeneous com put ing in OpenCL
• Data parallelism in OpenCL
• Task parallelism in OpenCL
• Future direct ion for para lle l com put ing

1 9

Future Para lle l Program m ing

• Real world applicat ions contain data
parallel parts as well as
serial/ sequent ial parts

• OpenCL addresses these Apps need by
support ing Data Parallel & Task Parallel

• Braided Parallelism – composing Data
Parallel & Task Parallel const ructs in a
single algorithm

• CPUs are ideal for Braided Parallelism

2 0

Future para lle l program m ing: Larrabee

• Cores communicate on a wide r ing bus
– Fast access to m em ory and fixed funct ion blocks
– Fast access for cache coherency

• L2 cache is part it ioned among the cores
– Provides high aggregate bandwidth
– Allows data replicat ion & sharing

M
em

or
y

C
on

tr
ol

le
r

Mult i -
Threaded

W ide SI MD

Mult i -
Threaded

W ide SI MD

Mult i -
Threaded

W ide SI MD

Mult i -
Threaded

W ide SI MD

DIDI

DI

F
ix

ed
 F

un
ct

io
n

Te
xt

ur
e

Lo
gi

c

M
em

or
y

C
on

tr
ol

le
r

M
em

or
y

C
on

tr
ol

le
r

D
is

pl
ay

 I
nt

er
fa

ce
S

ys
te

m
 In

te
rf

ac
e

DI

Multi -Threaded
Wide SIMD

DI

Multi -Threaded
Wide SIMD

DI

Multi -Threaded
Wide SIMD

DI

Multi -Threaded
Wide SIMD

L2 Cache

. . .

. . .

2 1

Processor Core Block Diagram

• Separate scalar and vector
units with separate registers

• Vector unit : 16 32-bit ops/ clock
• I n-order inst ruct ion execut ion
• Short execut ion pipelines
• Fast access from L1 cache
• Direct connect ion to each

core’s subset of the L2 cache
• Prefetch inst ruct ions load L1

and L2 caches

Instruction Decode

Scalar
Unit

Vector
Unit

Scalar
Registers

Vector
Registers

L1 Icache & Dcache

256KB L2 Cache
Local Subset

Ring

2 2

Key Differences from Typica l GPUs

• Each Larrabee core is a com plete I ntel processor
– Context switching & pre-empt ive mult i- tasking
– Virtual memory and page swapping, even in texture logic
– Fully coherent caches at all levels of the hierarchy

• Efficient inter-block com m unicat ion
– Ring bus for full inter-processor communicat ion
– Low latency high bandwidth L1 and L2 caches
– Fast synchronizat ion between cores and caches

Larrabee is perfect for the braided paralle lism

in future applicat ions

2 3

Conclusion
• OpenCL defines a plat form-API / framework for heterogeneous

comput ing … not just GPGPU or CPU-offload programming

• OpenCL has the potent ial to deliver portably performant code;
but only if it s used correct ly:
– I m plicit SI MD data parallel code has the best chance of m apping

onto a diverse range of hardware … once OpenCL im plem entat ion
quality catches up with m ature shader languages

• The future is clear:
– Braided parallelism m ixing task parallel and data parallel code in

a single program … balancing the load am ong ALL OF the
plat form ’s resources

– OpenCL can handle this … and em erging plat form s such as
Larrabee are well suited to support this m odel

2 4

References

• s0 9 .idav.ucdavis.edu for slides from a Siggraph2009
course t it led “Beyond Programmable Shading”

• Seiler, L., Carmean, D., et al. 2008. Larrabee: A m any-core
x86 architecture for visual com put ing. SI GGRAPH ’08: ACM
SI GGRAPH 2008 Papers, ACM Press, New York, NY

• Fatahalian, K., Houston, M., “GPUs: a closer look” ,
Communicat ions of the ACM October 2008, vol 51 # 10.
graphics.stanford.edu/ ~ kayvonf/ papers/ fatahalianCACM.pdf

2 5

Legal Discla im er
• INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF
INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN
MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

• Intel may make changes to specifications and product descriptions at any time, without notice.
• All products, dates, and figures specified are preliminary based on current expectations, and are subject to

change without notice.
• Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which

may cause the product to deviate from published specifications. Current characterized errata are available on
request.

• Larrabee and other code names featured are used internally within Intel to identify products that are in
development and not yet publicly announced for release. Customers, licensees and other third parties are not
authorized by Intel to use code names in advertising, promotion or marketing of any product or services and
any such use of Intel's internal code names is at the sole risk of the user

• Performance tests and ratings are measured using specific computer systems and/or components and reflect
the approximate performance of Intel products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

• Intel, Intel Inside and the Intel logo are trademarks of Intel Corporation in the United States and other
countries.

• *Other names and brands may be claimed as the property of others.
• Copyright © 2009 Intel Corporation.

2 6

Risk Factors
This presentat ion contains forward- looking statements that involve a number of r isks and uncertaint ies. These
statements do not reflect the potent ial impact of any mergers, acquisit ions, divest itures, investments or other
sim ilar t ransact ions that may be completed in the future. The informat ion presented is accurate only as of
today’s date and will not be updated. I n addit ion to any factors discussed in the presentat ion, the important
factors that could cause actual results to differ mater ially include the following: Demand could be different
from I ntel's expectat ions due to factors including changes in business and econom ic condit ions, including
condit ions in the credit market that could affect consumer confidence; customer acceptance of I ntel’s and
compet itors’ products; changes in customer order pat terns, including order cancellat ions; and changes in the
level of inventory at customers. I ntel’s results could be affected by the t im ing of closing of acquisit ions and
divest itures. I ntel operates in intensely compet it ive indust r ies that are character ized by a high percentage of
costs that are fixed or difficult to reduce in the short term and product demand that is highly var iable and
difficult to forecast . Revenue and the gross margin percentage are affected by the t im ing of new I ntel product
int roduct ions and the demand for and market acceptance of I ntel's products; act ions taken by I ntel's
compet itors, including product offer ings and int roduct ions, market ing programs and pr icing pressures and
I ntel’s response to such act ions; I ntel’s ability to respond quickly to technological developments and to
incorporate new features into its products; and the availability of sufficient supply of components from
suppliers to meet demand. The gross margin percentage could vary significant ly from expectat ions based on
changes in revenue levels; product m ix and pr icing; capacity ut ilizat ion; var iat ions in inventory valuat ion,
including var iat ions related to the t im ing of qualifying products for sale; excess or obsolete inventory;
manufactur ing yields; changes in unit costs; impairments of long- lived assets, including manufactur ing,
assembly/ test and intangible assets; and the t im ing and execut ion of the manufactur ing ramp and associated
costs, including start -up costs. Expenses, part icular ly certain market ing and compensat ion expenses, vary
depending on the level of demand for I ntel's products, the level of revenue and profits, and impairments of
long- lived assets. I ntel is in the m idst of a st ructure and efficiency program that is result ing in several act ions
that could have an impact on expected expense levels and gross margin. I ntel's results could be impacted by
adverse econom ic, social, polit ical and physical/ infrast ructure condit ions in the count r ies in which I ntel, its
customers or its suppliers operate, including m ilitary conflict and other security r isks, natural disasters,
infrast ructure disrupt ions, health concerns and fluctuat ions in currency exchange rates. I ntel's results could
be affected by adverse effects associated with product defects and errata (deviat ions from published
specificat ions) , and by lit igat ion or regulatory mat ters involving intellectual property, stockholder, consumer,
ant it rust and other issues, such as the lit igat ion and regulatory mat ters descr ibed in I ntel's SEC reports. A
detailed discussion of these and other factors that could affect I ntel’s results is included in I ntel’s SEC filings,
including the report on Form 10-Q for the quarter ended June 28, 2008.

	OpenCL*, Heterogeneous Computing, and the CPU
	Agenda
	Heterogeneous computing
	OpenCL: it’s not just a GPGPU Language
	Agenda
	OpenCL’s Two Styles of Data-Parallelism
	Data-Parallelism: options on IA processors
	Explicit SIMD data parallelism
	Explicit SIMD data parallelism: Case Study
	Towards “Portable” Performance
	Towards “Portable” Performance
	“Implicit SIMD” data parallel code
	“Implicit SIMD” data parallel code
	Portable Performance in OpenCL
	Agenda
	Task Parallelism Overview
	Task Parallelism in OpenCL
	Agenda
	Future Parallel Programming
	Future parallel programming: Larrabee
	Processor Core Block Diagram
	Key Differences from Typical GPUs
	Conclusion
	References
	Slide Number 25
	Risk Factors

