OpenCL ", Heterogeneous

Dr. Tim Mattson
Visual Applications Research lab
Intel Corporation

© Intel C_orporatio)

*3'd party names are the property of their owners

Agenda

Heterogeneous computing in OpenCL
Data parallelism in OpenCL
Task parallelism in OpenCL
Future direction for parallel computing

Heterogeneous computing

« A modern platform has:
— Multi-core CPU(s)
— A GPU
— DSP processors
— ...other?

« The goal should NOT be to “off-load" the CPU. We
need to make the best use of all the available
resources from within a single program:

— One program that runs well (i.e. reasonably close to “hand-
tuned” performance) on a heterogeneous mixture of
processors.

GMCH = graphics memory control hub, |ICH = Input/ o utput control-hub

OpenCL: it’s not just a GPGPU

Language

« OpenCL defines a platform API to coordinate
heterogeneous parallel computations

— Literature rich with parallel coordination languages/API
— OpenCL unique in its ability to coordinate CPUs, GPUs, etc

 Key coordination concepts
— Each device has its own asynchronous workqueue

— Synchronize between OCL computations w/event handles
from different (or same) devices

— Enables algorithms and systems that use all available
computational resources

— Enqueue “native functions” for integration with C/C++ code

Agenda

« Heterogeneous computing in OpenCL
« Data parallelism in OpenCL

e Task parallelism in OpenCL

e Future direction for parallel computing

OpenCL’'s Two Styles of Data -Parallelism

« Explicit SIMD data parallelism:
— The kernel defines one stream of instructions
— Parallelism from using wide vector types
— Size vector types to match native HW width
— Combine with task parallelism to exploit multiple cores

e Implicit SIMD data parallelism (i.e. shader-style):
— Write the kernel as a “scalar program”
— Use vector data types sized naturally to the algorithm

— Kernel automatically mapped to SIMD-compute-resources
and cores by the compiler/runtime/hardware.

Both approaches are viable CPU options

Data-Parallelism: options on | A
processors

 Explicit SIMD data parallelism
— Programmer chooses vector data type (width)

— Compiler hints using attributes
— vec_type_hint(typen)

 Implicit SIMD Data parallel

— Map onto CPUs, GPUs, Larrabee, ...
— SSE/AVX/LRBni: 4/8/16 workitems in parallel

« Hybrid use of the two methods
— AVX: can run two 4-wide workitems in parallel
— LRBni: can run four 4-wide workitems in parallel

Explicit SIMD data parallelism

« OpenCL as a portable interface to vector instruction sets
— Block loops and pack data into vector types (float4, ushortl6, etc).
— Replace scalar ops in loops with blocked loops and vector ops.
— Unroll loops, optimize indexing to match machine vector width

float a[N], b[N, c[N;
for (i=0; i<N i++)
c[i] = a[i]*b[i];

<<< t he above becones >>>>

float4 a[N' 4], b[N 4], c[N4];
for (i=0; i<N4; i++)
c[i] =a[i]*b[1];

Explicit SIMD data parallelism means you tune your code to the
vector width and other properties of the compute de vice

Explicit SIMD data parallelism: Case Study

» Video contrast/color optimization kernel on a dual core CPU

Hand-tuned SSE +
Multithreading

£ 50 C
o
% E L Unroll loops
5 23%
o
£ t Optimize vector indexing
© 186%
17 ¢ Vectorize (block loops, pack
7p)
% E into ushort8 and ushort16)
S 40%
>
P P -1
l g 1 work -item per core + loops

*
20% 100% % peak performance
Good news: OpenCL code 95% of hand -tuned SSE/ MT perf.

Bad news: New platform, redo all those optimization S.

Rhz: dua (_:ore (.:PU * Results have been estimated based on internal Intel analysis and are provided for
9 pre-release"version of OpenCL informational purposes only. Any difference in system hardware or software design or
Source: I ntel Corp. configuration may affect actual performance.

Towards “Portable” Performance

void P4_Bilateral9 (int start, int end, float v)

 The following C code is an
example of a Bilateral 1D filter:

« Reminder: Bilateral filter is an
edge preserving image
processing algorithm.

e See more information here;:
http://scien.stanford.edu/class/psych221/

projects/06/imagescaling/bilati.html|

spatial kemel f mfluence g in the ntensity weight f g
domain for the central pixel for the central pixel

{

int i, j, k;

float w4], a[4], p[4];

float inv_of_2v = -0.5 / v;

for (i = start; i < end; i++) {

float wt[4] = { 1.0f, 1.0f, 1.0f, 1.0f };
for (k = 0; k < 4; k++)
a[k] = image[i][K];
for (j =1;] <=4; j++) {
for (k = 0; k < 4; k++)
plk] = image[i - j*SIZE][k] - image[i][Kk];
for (k = 0; k < 4; k++)
wW k] = exp (p[k] * p[k] * inv_of_2v);
for (k =0; k <4; k++) {
W[kl += wik];
a[k] += wW k] * image[i - j*SIZE][K];
}
}
for (j =1;] <=4; j++) {
for (k = 0; k < 4; k++)
plk] = image[i + j*SIZE][k] - image[i][k];
for (k = 0; k < 4; k++;
W k] = exp (p[k] * p[k] * inv_of_2v);
for (k =0; k < 4; k++) {
W[kl += wik];
a[k] += wk] * image[i + j*SIZE][K];

}
}
for (k = 0; k < 4; k++) {
image2[i][k] = a[k] / w[k];
}

http://scien.stanford.edu/class/psych221/projects/06/imagescaling/bilati.html�
http://scien.stanford.edu/class/psych221/projects/06/imagescaling/bilati.html�

Towards “Portable” Performance

void P4_Bilateral9 (int start, int end, float v)

{

« The folloy
example

« Reminder
edge preg
processin

e See more
http://scien

projects/06

void P4 Bilateral9 (int start?ifnf end, float v)
{
<<< Decl arati ons >>>
for (I = start; i < end; i++) {
for (j =1; j <= 4; j++) {
<<< a series of short |oops >>>>

}
for (j =1; j <= 4; j++) {

<<< a 2" series of short |oops >>>

http://scien.stanford.edu/class/psych221/projects/06/imagescaling/bilati.html�
http://scien.stanford.edu/class/psych221/projects/06/imagescaling/bilati.html�

“I'mplicit SIMD” data parallel code

__kernel void P4_Bilateral9 (__global float* inlmage, __global float* outlmage, float v)

“outer” loop replaced
by work-items
running over an
NDRange index set

NDRange 4* image
size ...since each
workitem does a
color for each pixel

Leave it to the
compiler to map
work-items onto
lanes of the vector
units ...

{

const size_t mylD = get_global_id(0);
const float inv_of_2v = -0.5f/ v;
const size_t myRow = mylD/ IMAGE_WIDTH;
size_t maxDistance = min(DISTANCE, myRow);
maxDistance = min(maxDistance, IMAGE_HEIGHT - myRow);
float currentPixel, neighborPixel, newPixel;
float diff;
float accumulatedWeights, currentWeights;
newPixel = currentPixel = inlmage[myID];
accumulatedWeights = 1.0f;

for (size_t dist = 1; dist <= maxDistance; ++dist)

{
neighborPixel = inlmage[myID + dist*IMAGE_WIDTH];
diff = neighborPixel - currentPixel;
currentWeights = exp(diff * diff * inv_of_2v);
accumulatedWeights += currentWeights;
newPixel += neighborPixel * currentWeights;
neighborPixel = inlmage[myID - dist* IMAGE_WIDTH];
diff = neighborPixel - currentPixel;
currentWeights = exp(diff * diff * inv_of_2v);
accumulatedWeights += currentWeights;
newPixel + = neighborPixel * currentWeights;

}

outlmage[mylID] = newPixel / accumulatedWeights;

“I'mplicit SIMD” data parallel code

| kernel void P4 Bilateral9 (__global float* inimage, global float* outlmage, float v)
. “0 __kernel void p4 bilateral9(__global float* inl mage ,
___global float* outl mage, float v)
by {
rI\IuI: const size _t mylD = get_global id(0);
<< < declarations >>>
e NI for (size _t dist = 1; dist <= maxDistance; + + dist){
SiZ neighborPixel = inlmage[mylD +
WQ dist* | MAGE_WIDTH];
Co diff = neighborPixel - currentPixel;
currentWeights = exp(diff * diff * inv_of_2v);
e Le . :
o << plus others to compute pixels, weights, etc >>
WQ accumulatedWeights + = currentWeights;
laf !
un outlmage[myl D] = newPixel/ accumulatedWeights;
}
}

Portable Performance in OpenCL

 Implicit SIMD code ...where the framework maps
work-items onto the “lanes of the vector unit”
creates the opportunity for portable code that
performs well on full range of OpenCL compute

devices

 Requires mature OpenCL technology that “knows

how to do this:

— ...But it is important to note ... we know this approach
works since its based on the way shader compilers work

today

intel)

Agenda

« Heterogeneous computing in OpenCL
e Data parallelism in OpenCL

« Task parallelism in OpenCL

e Future direction for parallel computing

Task Parallelism Overview

« Think of a task as an asynchronous function call
— “Do X at some point in the future”
— Optionally “...after Y is done”
— Light weight, often in user space

e Strengths
— Copes well with heterogeneous workloads
— Doesn’t require 1000’s of strands
— Scales well with core count
 Limitations
— No automatic support for latency hiding
— Must explicitly write SIMD code

A natural fit to multi -core CPUs

intel)

Task Parallelism in OpenCL

* clEnqueueTask
— Imagine “sea of different tasks” executing concurrently
— A task “owns the core” (i.e., a workgroup size of 1)

e Use tasks when algorithm....
— Benefits from large amount of local/private memory
— Has predictable global memory accesses
— Can be programmed using explicit vector style
— “Just doesn’t have 1000’s of identical things to do”

 Use data-parallel kernels when algorithm ...

— Does not benefit from large amounts of local/private
memory

— Has unpredictable global memory accesses
— Needs to apply same operation across large number of data

Agenda

Heterogeneous computing in OpenCL
Data parallelism in OpenCL

Task parallelism in OpenCL

Future direction for parallel computing

Future Parallel Programming

 Real world applications contain data
parallel parts as well as
serial/ sequential parts

« OpenCL addresses these Apps need by
supporting Data Parallel & Task Parallel

 Braided Parallelism — composing Data
Parallel & Task Parallel constructs in a
single algorithm

e CPUs are ideal for Braided Parallelism

Future parallel programming: Larrabee

Multi -Threaded Multi -Threaded
Wide SIMD Wide SIMD

Display Interface

c
8
+—
o
=
>
LL
e
o
X
LL

L2 Cache

Memory Controller
Memory Controller

Multi -Threaded Multi -Threaded
Wide SIMD Wide SIMD

5 DS | IS DS |

Texture Logic
System Interface

« Cores communicate on a wide ring bus
— Fast access to memory and fixed function blocks
— Fast access for cache coherency
e L2 cache is partitioned among the cores
— Provides high aggregate bandwidth
— Allows data replication & sharing

Processor Core Block Diagram

instruction Decode e Separate scalar and vector
units with separate registers

 Vector unit: 16 32-bit ops/clock
e In-order instruction execution

e Short execution pipelines

e Fast access from L1 cache

e Direct connection to each
core’s subset of the L2 cache

 Prefetch instructions load L1
and L2 caches

Key Differences from Typical GPUs

« Each Larrabee core is a complete Intel processor
— Context switching & pre-emptive multi-tasking
— Virtual memory and page swapping, even in texture logic
— Fully coherent caches at all levels of the hierarchy

e Efficient inter-block communication
— Ring bus for full inter-processor communication
— Low latency high bandwidth L1 and L2 caches
— Fast synchronization between cores and caches

Larrabee is perfect for the braided parallelism

In future applications

Conclusion

* OpenCL defines a platform-API/framework for heterogeneous
computing ...not just GPGPU or CPU-offload programming

« OpenCL has the potential to deliver portably performant code;
but only if its used correctly:
— Implicit SIMD data parallel code has the best chance of mapping

onto a diverse range of hardware ...once OpenCL implementation
guality catches up with mature shader languages

e The future is clear:

— Braided parallelism mixing task parallel and data parallel code in

a single program ...balancing the load among ALL OF the
platform’s resources

— OpenCL can handle this ...and emerging platforms such as
Larrabee are well suited to support this model

intel)

References

e sO09.idav.ucdavis.edu for slides from a Siggraph2009
course titled “Beyond Programmable Shading”

 Seiler, L., Carmean, D., et al. 2008. Larrabee: A many-core
x86 architecture for visual computing. SIGGRAPH '08: ACM
SIGGRAPH 2008 Papers, ACM Press, New York, NY

« Fatahalian, K., Houston, M., “GPUs: a closer look”,
Communications of the ACM October 2008, vol 51 #10.
graphics.stanford.edu/~kayvonf/papers/fatahalianCACM.pdf

intel)

Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF
INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN
MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.
All products, dates, and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which
may cause the product to deviate from published specifications. Current characterized errata are available on
request.

Larrabee and other code names featured are used internally within Intel to identify products that are in
development and not yet publicly announced for release. Customers, licensees and other third parties are not

authorized by Intel to use code names in advertising, promotion or marketing of any product or services and
any such use of Intel's internal code names is at the sole risk of the user

Performance tests and ratings are measured using specific computer systems and/or components and reflect
the approximate performance of Intel products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

Intel, Intel Inside and the Intel logo are trademarks of Intel Corporation in the United States and other
countries.

*Other names and brands may be claimed as the property of others.
Copyright © 2009 Intel Corporation.

25

Risk Factors

This presentation contains forward-looking statements that involve a number of risks and uncertainties. These
statements do not reflect the Botential impact of any mergers, acquisitions, divestitures, investments or other
similar transactions that may be completed in the future. The information presented is accurate only as of
today’s date and will not be updated. In addition to any factors discussed in the presentation, the important
factors that could cause actual results to differ materially include the following: Demand could be different
from Intel's expectations due to factors including changes in business and economic conditions, including
conditions in the credit market that could affect consumer confidence; customer acceptance of Intel’s and
com,oetl_tors’ products; changes in customer order patterns, including order cancellations; and changes in the
level of inventory at customers. Intel’s results could be affected by the timing of closing of acquisitions and
divestitures. Intel operates in intensely competitive industries that are characterized by a high percentage of
costs that are fixed or difficult to reduce in the short term and product demand that is highly variable and
difficult to forecast. Revenue and the gross margin percentage are affected by the timing of new Intel product
introductions and the demand for and market acceptance of Intel's products; actions taken by Intel's
comfoetltors, including product offerings and introductions, marketing programs and pricing pressures and
Intel’s response to such actions; Intel’s ability to respond quickly to technological developments and to
mcorrporate new features into its products; and the avallabllltly of sufficient supply of components from
suppliers to meet demand. The gross margin percentage could vary significantly from expectations based on
changes in revenue levels; product mix and pricing; capacity utilization; variations in inventory valuation,
including variations related to the timing of qualifying products for sale; excess or obsolete inventory;
manufacturing yields; changes in unit costs; impairments of long-lived assets, including manufacturing,
assembly/test and intangible assets; and the timing and execution of the manufacturing ramp and associated
costs, including start-up costs. Expenses, particularly certain marketing and compensation expenses, vary
depending on the level of demand for Intel's products, the level of revenue and profits, and impairments of
long-lived assets. Intel is in the midst of a structure and efficiency program that is resulting in several actions
that could have an impact on expected expense levels and gross margin. Intel's results could be impacted by
adverse economic, social, political and physical/infrastructure conditions in the countries in which Intel, its
customers or its suppliers operate, including military conflict and other security risks, natural disasters,
infrastructure disruptions, health concerns and fluctuations in currency exchange rates. Intel's results could
be affected by adverse effects associated with product defects and errata ﬁdeviations from published
specifications), and by litigation or regulatory matters involving intellectual property, stockholder, consumer,
antitrust and other issues, such as the litigation and regulatory matters described in Intel's SEC reports. A
detailed discussion of these and other factors that could affect Intel’s results is included in Intel’s SEC filings,

including the report on Form 10-Q for the quarter ended June 28, 2008.

	OpenCL*, Heterogeneous Computing, and the CPU
	Agenda
	Heterogeneous computing
	OpenCL: it’s not just a GPGPU Language
	Agenda
	OpenCL’s Two Styles of Data-Parallelism
	Data-Parallelism: options on IA processors
	Explicit SIMD data parallelism
	Explicit SIMD data parallelism: Case Study
	Towards “Portable” Performance
	Towards “Portable” Performance
	“Implicit SIMD” data parallel code
	“Implicit SIMD” data parallel code
	Portable Performance in OpenCL
	Agenda
	Task Parallelism Overview
	Task Parallelism in OpenCL
	Agenda
	Future Parallel Programming
	Future parallel programming: Larrabee
	Processor Core Block Diagram
	Key Differences from Typical GPUs
	Conclusion
	References
	Slide Number 25
	Risk Factors

