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Agenda

• Heterogeneous com put ing in OpenCL
• Data parallelism  in OpenCL
• Task parallelism  in OpenCL
• Future direct ion for parallel com put ing
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Heterogeneous com put ing

• A m odern plat form  has:
– Mult i- core CPU(s)
– A GPU
– DSP processors
– … other?

• The goal should NOT be to “off- load" the CPU. We 
need to m ake the best  use of all the available 
resources from  within a single program :
– One program that  runs well ( i.e. reasonably close to “hand-

tuned”  performance)  on a heterogeneous m ixture of 
processors.

GMCHGPU

I CH

CPU CPU

DRAM

GMCH =  graphics m em ory cont rol hub,   I CH =  I nput / o utput  cont rol hub
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OpenCL: it ’s not  just  a  GPGPU 
Language
• OpenCL defines a plat form  API  to coordinate 

heterogeneous parallel com putat ions
– Literature r ich with parallel coordinat ion languages/ API
– OpenCL unique in its abilit y to coordinate CPUs, GPUs, etc

• Key coordinat ion concepts
– Each device has its own asynchronous workqueue
– Synchronize between OCL computat ions w/ event  handles 

from different  (or same)  devices
– Enables algorithms and systems that  use all available 

computat ional resources
– Enqueue “nat ive funct ions”  for integrat ion with C/ C+ +  code
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OpenCL’s Tw o Styles of Data - Para lle lism

• Explicit  SI MD data parallelism :
– The kernel defines one st ream of inst ruct ions
– Parallelism  from using wide vector types
– Size vector types to match nat ive HW width
– Combine with task parallelism  to exploit  mult iple cores

• I m plicit  SI MD data parallelism  ( i.e. shader-style) :
– Write the kernel as a “ scalar program”
– Use vector data types sized naturally to the algorithm
– Kernel automat ically mapped to SI MD-compute- resources 

and cores by the compiler/ runt ime/ hardware.

Both approaches are viable CPU opt ions
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Data - Para lle lism : opt ions on I A 
processors
• Explicit  SI MD data parallelism  

– Programmer chooses vector data type (width)
– Compiler hints using at t r ibutes

– vec_type_hint ( typen)

• I m plicit  SI MD Data parallel  
– Map onto CPUs, GPUs, Larrabee, …

– SSE/ AVX/ LRBni:  4/ 8/ 16 workitem s in parallel

• Hybrid use of the two m ethods
– AVX:  can run two 4-wide workitem s in parallel
– LRBni:  can run four 4-wide workitem s in parallel
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Explicit  SI MD data para lle lism
• OpenCL as a portable interface to vector inst ruct ion sets

– Block loops and pack data into vector types ( float4, ushort16, etc) .
– Replace scalar ops in loops with blocked loops and vector ops.
– Unroll loops, opt im ize indexing to m atch m achine vector width

float a[N], b[N], c[N];
for (i=0; i<N; i++)

c[i] = a[i]*b[i];

<<< the above becomes >>>>

float4 a[N/4], b[N/4], c[N/4];
for (i=0; i<N/4; i++)

c[i] = a[i]*b[i];

Explicit  SI MD data para lle lism  m eans you tune your  code to the 
vector  w idth and other  proper t ies of the com pute de vice



9 *  Results have been est imated based on internal I ntel analysis and are provided for 
informat ional purposes only. Any difference in system hardware or software design or 

configurat ion may affect  actual performance.

Explicit  SI MD data  para lle lism : Case Study

1  w ork - item  per  core +  loops  

Vector ize ( block  loops, pack  
into ushor t8  and ushor t1 6 )   

Opt im ize vector  index ing  

Unroll loops  

Hand - tuned SSE +  
Mult ithreading  
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Tow ards “Por table” Per form ance

• The following C code is an 
exam ple of a Bilateral 1D filter:

• Rem inder:  Bilateral filter is an 
edge preserving im age 
processing algorithm . 

• See m ore inform at ion here:  
ht tp: / / scien.stanford.edu/ class/ psych221/
projects/ 06/ im agescaling/ bilat i.htm l

void P4_Bilateral9 (int start, int end, float v)

{

int i, j, k;

float w[4], a[4], p[4];

float inv_of_2v = -0.5 / v;

for (i = start; i < end; i++) {

float wt[4] = { 1.0f, 1.0f, 1.0f, 1.0f };

for (k = 0; k < 4; k++)

a[k] = image[i][k];

for (j = 1; j <= 4; j++) {

for (k = 0; k < 4; k++)

p[k] = image[i - j*SIZE][k] - image[i][k];

for (k = 0; k < 4; k++)

w[k] = exp (p[k] * p[k] * inv_of_2v);

for (k = 0; k < 4; k++) {

wt[k] += w[k];

a[k] += w[k] * image[i - j*SIZE][k];

}

}

for (j = 1; j <= 4; j++) {

for (k = 0; k < 4; k++)

p[k] = image[i + j*SIZE][k] - image[i][k];

for (k = 0; k < 4; k++;

w[k] = exp (p[k] * p[k] * inv_of_2v);

for (k = 0; k < 4; k++) {

wt[k] += w[k];

a[k] += w[k] * image[i + j*SIZE][k];

}

}

for (k = 0; k < 4; k++) {

image2[i][k] = a[k] / wt[k];

}

}

}

http://scien.stanford.edu/class/psych221/projects/06/imagescaling/bilati.html�
http://scien.stanford.edu/class/psych221/projects/06/imagescaling/bilati.html�
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void P4_Bilateral9 (int start, int end, float v)

{

<<< Declarations >>>

for (i = start; i < end; i++) { 

for (j = 1; j <= 4; j++) {

<<< a series of short loops >>>>

}

for (j = 1; j <= 4; j++) {

<<< a 2nd series of short loops >>>

}

}

}

http://scien.stanford.edu/class/psych221/projects/06/imagescaling/bilati.html�
http://scien.stanford.edu/class/psych221/projects/06/imagescaling/bilati.html�
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“I m plicit  SI MD” data para lle l code

• “outer”  loop replaced 
by work- items 
running over an 
NDRange index set

• NDRange 4* image 
size … since each 
workitem  does a 
color for each pixel

• Leave it  to the 
compiler to map 
work- items onto 
lanes of the vector 
units …

__kernel void P4_Bilateral9 (__global float *  inIm age, __global float *  out Im age, float  v)

{

const  size_t  m yID     =  get_global_id(0) ;

const  float  inv_of_2v =  -0.5f /  v;

const  size_t  m yRow    =  m yID /  IMAGE_WIDTH;

size_t  m axDistance =  m in(DISTANCE, m yRow) ;

m axDistance =  m in(m axDistance, IMAGE_HEIGHT - m yRow) ;

float  currentPixel, neighborPixel, newPixel;

float  diff;

float  accum ulatedWeights, currentWeights;

newPixel =  currentPixel =  inIm age[ m yID] ;

accum ulatedWeights =  1.0f;

for (size_t  dist  =  1;  dist  < =  m axDistance;  + + dist )

{

neighborPixel            =  inIm age[ m yID +  dist * IMAGE_WIDTH] ;

diff                           =  neighborPixel - currentPixel;

currentWeights         =  exp(diff *  diff *  inv_of_2v) ;

accum ulatedWeights + =  currentWeights;

newPixel                   + =  neighborPixel *  currentWeights;

neighborPixel              =  inIm age[ m yID - dist * IMAGE_WIDTH] ;

diff                             =  neighborPixel - currentPixel;

currentWeights           =  exp(diff *  diff *  inv_of_2v) ;

accum ulatedWeights + =  currentWeights;

newPixel                   +  =  neighborPixel *  currentWeights;

}

out Im age[ m yID]  =  newPixel /  accum ulatedWeights;

}
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_ _ kernel void p4 _ bila tera l9 ( _ _ global f loat *  inI m age , 
_ _ global f loat *  out I m age, f loat  v)

{
const  size_ t  m yI D     =  get_ global_ id( 0 ) ;

< < <  declarat ions > > >

for  ( size_ t  dist  =  1 ; dist  < =  m axDistance; + + dist ) {

ne ighborPixe l     =  inI m age[ m yI D +  
dist * I MAGE_ W I DTH] ;

diff                    =  ne ighborPixe l - currentPixe l;

currentW eights  =  exp( diff  *  diff  *  inv_ of_ 2 v) ;

< <  plus others to com pute pixe ls, w eights, e tc > >

accum ulatedW eights + =  currentW eights;
}
out I m age[ m yI D]  =  new Pixe l /  accum ulatedW eights;

}
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Portable Per form ance in OpenCL

• I m plicit  SI MD code … where the fram ework m aps 
work- item s onto the “ lanes of the vector unit ”   … 
creates the opportunity for portable code that  
perform s well on full range of OpenCL com pute 
devices

• Requires m ature OpenCL technology that  “ knows”  
how to do this:
– … But  it  is important  to note …. we know this approach 

works since its based on the way shader compilers work 
today
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Task Para lle lism  Overview

• Think of a task as an asynchronous funct ion call
– “Do X at  some point  in the future”
– Opt ionally “… after Y is done”
– Light  weight , often in user space

• St rengths
– Copes well with heterogeneous workloads
– Doesn’t  require 1000’s of st rands
– Scales well with core count

• Lim itat ions
– No automat ic support  for latency hiding
– Must  explicit ly write SI MD code

X()

Y( )

A natura l f it  to m ult i - core CPUs
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Task Para lle lism  in OpenCL

• clEnqueueTask
– I magine “sea of different  tasks”  execut ing concurrent ly
– A task “owns the core”  ( i.e., a workgroup size of 1)

• Use tasks when algorithm …
– Benefits from large amount  of local/ pr ivate memory
– Has predictable global memory accesses
– Can be programmed using explicit  vector style
– “Just  doesn’t  have 1000’s of ident ical things to do”

• Use data-parallel kernels when algorithm …
– Does not  benefit  from  large amounts of local/ pr ivate 

memory 
– Has unpredictable global memory accesses
– Needs to apply same operat ion across large number of data 

elements
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Agenda

• Heterogeneous com put ing in OpenCL
• Data parallelism  in OpenCL
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Future Para lle l Program m ing

• Real world applicat ions contain data 
parallel parts as well as 
serial/ sequent ial parts

• OpenCL addresses these Apps need by 
support ing Data Parallel & Task Parallel

• Braided Parallelism  – composing Data 
Parallel & Task Parallel const ructs in a 
single algorithm

• CPUs are ideal for Braided Parallelism   
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Future para lle l program m ing: Larrabee

• Cores communicate on a wide r ing bus
– Fast  access to m em ory and fixed funct ion blocks
– Fast  access for cache coherency

• L2 cache is part it ioned among the cores
– Provides high aggregate bandwidth
– Allows data replicat ion & sharing
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Processor  Core Block Diagram

• Separate scalar and vector 
units with separate registers

• Vector unit :  16 32-bit  ops/ clock
• I n-order inst ruct ion execut ion
• Short  execut ion pipelines
• Fast  access from  L1 cache
• Direct  connect ion to each 

core’s subset  of the L2 cache
• Prefetch inst ruct ions load L1 

and L2 caches

Instruction Decode

Scalar
Unit

Vector
Unit

Scalar
Registers

Vector
Registers

L1 Icache & Dcache

256KB L2 Cache
Local Subset

Ring
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Key Differences from  Typica l GPUs

• Each Larrabee core is a com plete I ntel processor
– Context  switching & pre-empt ive mult i- tasking
– Virtual memory and page swapping, even in texture logic
– Fully coherent  caches at  all levels of the hierarchy

• Efficient  inter-block com m unicat ion
– Ring bus for full inter-processor communicat ion
– Low latency high bandwidth L1 and L2 caches
– Fast  synchronizat ion between cores and caches

Larrabee is perfect  for the braided paralle lism  

in future applicat ions
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Conclusion
• OpenCL defines a plat form-API / framework for heterogeneous 

comput ing … not  just  GPGPU or CPU-offload programming

• OpenCL has the potent ial to deliver portably performant  code;  
but  only if it s used correct ly:
– I m plicit  SI MD data parallel code has the best  chance of m apping 

onto a diverse range of hardware … once OpenCL im plem entat ion 
quality catches up with m ature shader languages

• The future is clear:
– Braided parallelism  m ixing task parallel and data parallel code in 

a single program  … balancing the load am ong ALL OF the 
plat form ’s resources

– OpenCL can handle this … and em erging plat form s such as 
Larrabee are well suited to support  this m odel
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Legal Discla im er
• INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO 

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL 
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS 
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• Intel may make changes to specifications and product descriptions at any time, without notice.
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any such use of Intel's internal code names is at the sole risk of the user 

• Performance tests and ratings are measured using specific computer systems and/or components and reflect 
the approximate performance of Intel products as measured by those tests.  Any difference in system 
hardware or software design or configuration may affect actual performance.  

• Intel, Intel Inside and the Intel logo are trademarks of Intel Corporation in the United States and other 
countries.  

• *Other names and brands may be claimed as the property of others.
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Risk Factors
This presentat ion contains forward- looking statements that  involve a number of r isks and uncertaint ies. These 
statements do not  reflect  the potent ial impact  of any mergers, acquisit ions, divest itures, investments or other 
sim ilar t ransact ions that  may be completed in the future. The informat ion presented is accurate only as of 
today’s date and will not  be updated. I n addit ion to any factors discussed in the presentat ion, the important  
factors that  could cause actual results to differ mater ially include the following:  Demand could be different  
from I ntel's expectat ions due to factors including changes in business and econom ic condit ions, including 
condit ions in the credit  market  that  could affect  consumer confidence;  customer acceptance of I ntel’s and 
compet itors’ products;  changes in customer order pat terns, including order cancellat ions;  and changes in the 
level of inventory at  customers. I ntel’s results could be affected by the t im ing of closing of acquisit ions and 
divest itures. I ntel operates in intensely compet it ive indust r ies that  are character ized by a high percentage of 
costs that  are fixed or difficult  to reduce in the short  term  and product  demand that  is highly var iable and 
difficult  to forecast . Revenue and the gross margin percentage are affected by the t im ing of new I ntel product  
int roduct ions and the demand for and market  acceptance of I ntel's products;  act ions taken by I ntel's 
compet itors, including product  offer ings and int roduct ions, market ing programs and pr icing pressures and 
I ntel’s response to such act ions;  I ntel’s ability to respond quickly to technological developments and to 
incorporate new features into its products;  and the availability of sufficient  supply of  components from 
suppliers to meet  demand. The gross margin percentage could vary significant ly from expectat ions based on 
changes in revenue levels;  product  m ix and pr icing;  capacity ut ilizat ion;  var iat ions in inventory valuat ion, 
including var iat ions related to the t im ing of qualifying products for sale;  excess or obsolete inventory;  
manufactur ing yields;  changes in unit  costs;  impairments of long- lived assets, including manufactur ing, 
assembly/ test  and intangible assets;  and the t im ing and execut ion of the manufactur ing ramp and associated 
costs, including start -up costs. Expenses, part icular ly certain market ing and compensat ion expenses, vary 
depending on the level of demand for I ntel's products, the level of revenue and profits, and impairments of 
long- lived assets. I ntel is in the m idst  of a st ructure and efficiency program that  is result ing in several act ions 
that  could have an impact  on expected expense levels and gross margin. I ntel's results could be impacted by 
adverse econom ic, social, polit ical and physical/ infrast ructure condit ions in the count r ies in which I ntel, its 
customers or its suppliers operate, including m ilitary conflict  and other security r isks,  natural disasters, 
infrast ructure disrupt ions, health concerns and fluctuat ions in currency exchange rates. I ntel's results could 
be affected by adverse effects associated with product  defects and errata (deviat ions from published 
specificat ions) , and by lit igat ion or regulatory mat ters involving intellectual property, stockholder, consumer, 
ant it rust  and other issues, such as the lit igat ion and regulatory mat ters descr ibed in I ntel's SEC reports. A 
detailed discussion of these and other factors that  could affect  I ntel’s results is included in I ntel’s SEC filings, 
including the report  on Form  10-Q for the quarter ended June 28, 2008.


	OpenCL*, Heterogeneous Computing, and the CPU
	Agenda
	Heterogeneous computing
	OpenCL: it’s not just a GPGPU Language
	Agenda
	OpenCL’s Two Styles of Data-Parallelism
	Data-Parallelism: options on IA processors
	Explicit SIMD data parallelism
	Explicit SIMD data parallelism: Case Study
	Towards “Portable” Performance
	Towards “Portable” Performance
	“Implicit SIMD” data parallel code
	“Implicit SIMD” data parallel code
	Portable Performance in OpenCL
	Agenda
	Task Parallelism Overview
	Task Parallelism in OpenCL
	Agenda
	Future Parallel Programming
	Future parallel programming: Larrabee
	Processor Core Block Diagram
	Key Differences from Typical GPUs
	Conclusion
	References
	Slide Number 25
	Risk Factors

