
Tukwila – a Quad-Core Intel[®] Itanium[®] Processor

Eric DeLano Intel® Corporation

26 August 2008– HotChips 20, Copyright 2008 Intel Corporation

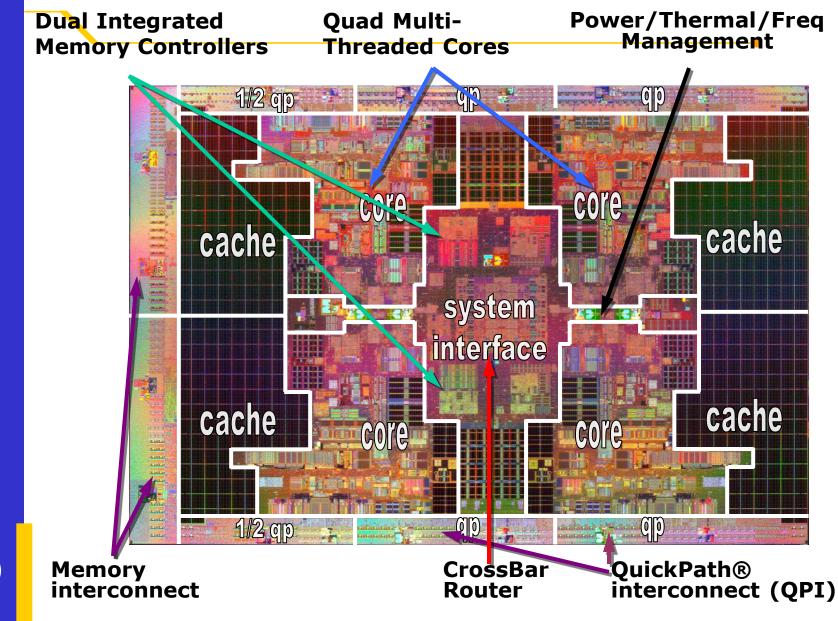
Agenda

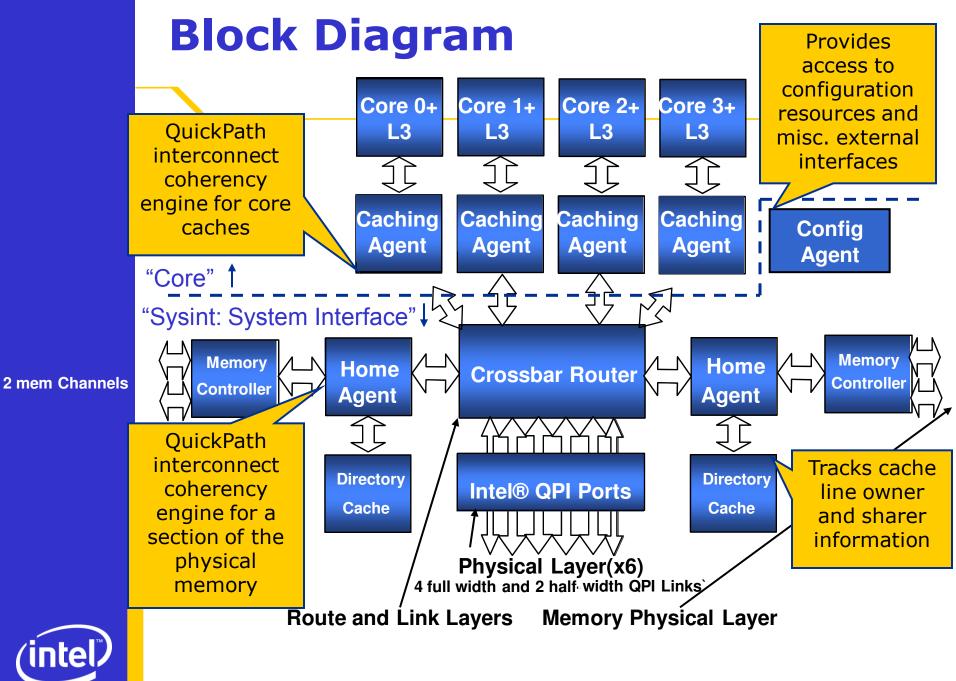
- Tukwila Overview
- Exploiting Thread Level Parallelism
- Improving Instruction Level Parallelism
- Scalability and Headroom
- Power and Frequency management
- Enterprise RAS and Manageability
- Conclusion

Intel® Itanium® Processor Family Roadmap

Processor Generation	Intel® Itanium® Processor 9000, 9100 Series	Tukwila	Poulson	Kittson			
Highlights	Dual Core	Quad Core (2 Billion Transistors)	Ultra Parallel Micro-architecture				
New Technologies	 24MB L3 cache Hyper-Threading Technology Intel® Virtualization Technology Intel® Cache Safe Technology Lock-step data integrity technologies (9100 series) DBS Power Management Technology (9100 series) 	 30MB On-Die Cache, Hyper- Threading Technology QuickPath Interconnect Dual Integrated Memory Controllers, 4 Channels Mainframe-Class RAS Enhanced Virtualization Common chipset w/ Next Gen Xeon® processor MP Voltage Frequency Mgmt Up to 2x Perf Vs 9100 Series* 	 Advanced multi-core architecture Hyper-threading enhancements Instruction-level advancements 32nm process technology Large On-Die Cache New RAS features Compatible with Tukwila platforms 	9 th Itanium® Product			
Targeted Segments	Enterprise Business (Database, Business Intelligence, ERP, HPC,) 2006-07 End 2008 Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. * Other names and brands may be claimed as the property of others. All products, dates, and figures are preliminary and are subject to change without notice. *Source: Intel performance projections 26 August 2008 – HotChips 20, Copyright 2008 Intel Corporation 3						
Availability							

Tukwila Overview


- Performance
 - 4 cores with 2 threads/core
 - High memory and interconnect bandwidth
 - ~30 MBytes of total cache circuitry
 - Other ILP and TLP improvements
- Scalability
 - Directory coherency with ~2MB of directory cache
 - Up to 8 socket glueless
 - Higher scalability with OEM chipsets.
- System integration and new system interfaces
 - Integrated Memory Controllers and Router.
 - Intel QuickPath® Interconnect and new memory interconnect
- Power efficiency and performance balance
 - Dynamic Voltage/Frequency management
- Reliability, Availability, Serviceability, Manageability
 - Processor and platform level RAS features, plus virtualization, and partitioning features for improved resource utilization.

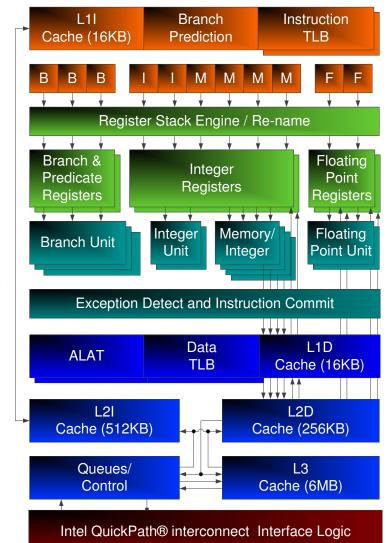


World's first 2 Billion transistor processor helps deliver improved performance & capabilities

Die Photo

nte

* Intel® QPI = Intel® QuickPath Interconnect

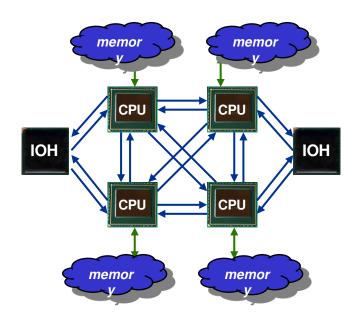

Exploiting TLP

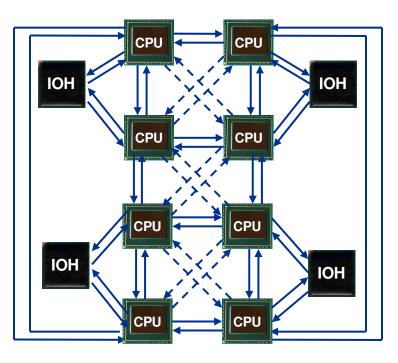
- 4 cores :2x from previous generation
- 2 threads per core :Same as the previous generation
- Hyper-Threading Enhancements to hide more stall cycles
 - Improved thread switch events
 - Allow thread switches on pipeline stalls that are not necessarily L3 cache demand misses (e.g. secondary misses after a pre-fetch).
 - Switch on semaphore release
 - Improved thread switch algorithms
 - Thread switch decision is based on "urgency counters" which are based on hardware events. Changes to urgency update logic have improved multi-threading performance.
- Multi-Core implementation
 - Dedicated caches provide the lowest latency, highest bandwidth, and best Quality of Service characteristics.
 - Each core has its own high bandwidth interface directly to the on-die router.

2x TLP plus Hyper-Threading improvements

Improving ILP

- Same high ILP core as on the 9000/9100 series processor
 - WIDE execution: 6 wide instruction fetch and issue
 - 6 wide integer units, 2 wide FP units, 4 wide ld/st, 3 wide branch units
 - 1 cycle L1 data cache
 - Separate L1I, L1D, L2I, and L2D caches
 - Short 8 stage pipeline HIGH performance and energy efficiency
 - 50bit physical addressing
- Increased frequency
- Improving the memory hierarchy
 - Increased memory bandwidth
 - 4k/8k/16k page size support in first level data TLB.


Scalability and Headroom


- Large caches and high bandwidth provides scalability and platform/application headroom
 - 30MBytes of total cache (vs. 26MB on previous generation)
 - 96GB/s total Intel QuickPath Interconnect (9x increase)
 - 34GB/s total memory bandwidth (6x increase)
 - Bandwidth increase >> core count increase
- Directory coherency for efficient scaling
 - Directory tracks cache line owners and sharers. Only owners and sharers are snooped.
 - Snoop traffic scales sub-linearly with system size for directory coherency rather than with the square of system size (for snoopy coherency).
- Supports up to 10 concurrent system global TLB purge broadcast transactions on QuickPath Interconnect.
- Supports glueless 8 socket systems.
 - Larger systems will be built using a hierarchy of multi-socket Nodes and OEM provided Node Controllers.

Good performance across different system sizes, topologies & across applications. Includes scalable system interconnect

Example Glueless topologies

4 CPU topology 8 CPU topology (memory not shown)

- 20 lane uni-directional channel (@4.8GT/s)
- --→ 10 lane uni-directional channel (@4.8GT/s)
- IOH: I/O Hub (e.g. bridge to PCIe)

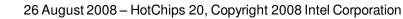
26 August 2008 – HotChips 20, Copyright 2008 Intel Corporation

Power/Frequency Management

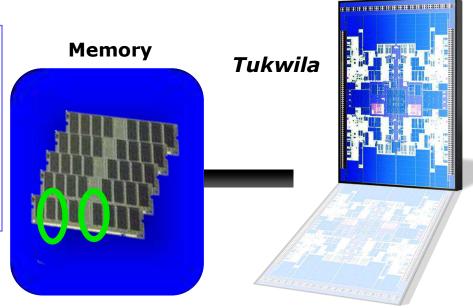
- Dynamically adjusts voltage (V) and frequency (F) to *maximize* <u>performance</u> for a given power envelope and thermal envelope
 - Different applications may run at different frequencies
 - Optimized around a TPCC activity factor
 - Adjustments are transparent to the OS
 - Deterministic estimated power leads to deterministic voltage/frequency changes
- Power saved by deconfigured cores, halted threads, or threads with a low activity factor will automatically be reallocated to the remaining threads that can take advantage of the power
- Supports Demand Based Switching (DBS)
 - For reduced power states, lowering both V and F results in greater (~cubic with frequency) <u>power savings</u> compared to the previous generation.
- Supports multiple power envelopes
- Lowering V/F for thermal events helps guarantee <u>data integrity</u>

Allows balancing performance & power savings as needed

Processor RAS


- All major structures are protected.
 - Same extensive ECC and parity protection as on the 9000/9100 series processor core.
 - Extensive ECC and parity protection on new Sysint structures and datapaths
- Extensive use of Soft Error hardened (SE-hardened) latches and registers
 - SE-hardened latches/registers are 100x/80x (respectively) less susceptible to soft error events (due to alpha and cosmic particles).
 - More than 99% of Sysint latches are SE-hardened
 - More than 33% of Core latches are SE-hardened
 - 100% of Sysint register files are SE-hardened or have ECC
- Intel[®] Cache Safe Technology added to L2I, L2D, and Directory Cache (in addition to L3)
 - Cache lines that show too many errors in the field are mapped out by the processor.
- Core De-configuration
 - Cores that show too many errors in the field can be mapped out.

Resiliency against soft and hard errors


Memory RAS Features (1/3)

- Memory channel protection
 - Transient errors: Memory replay (N times) on CRC error
 - Persistent errors: Channel reset of Physical layer
 - Hard errors: Lane failover on channel reset
- Memory thermal management
 - Thermal sensor on DIMM provides trip point indication to memory controller command throttling logic via the memory interconnect
 - Several modes implemented to provide a flexible memory throttling response.
- Patrol and demand scrubbing
 - Prevent uncorrectable errors by writing good data/ECC when encountering a correctable error.
 - In background (patrol), or due to a request (demand)

Memory RAS Features (2/3)

Most processors cannot correct data when 2 different DRAM devices fail, which could result in memory loss and a fatal system crash

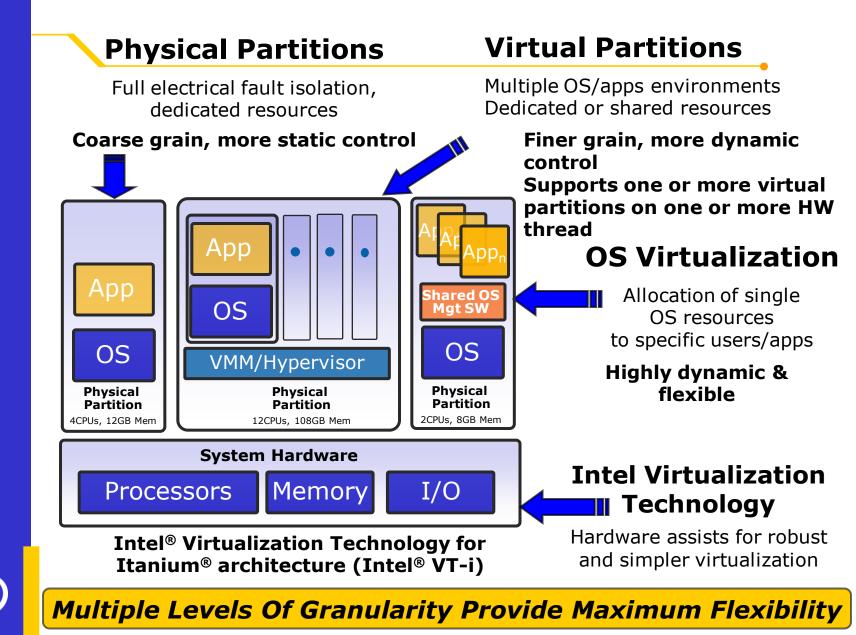
- DRAM Protection Double Device Data Correction (DDDC)
- Tukwila can fix both single and double <u>device</u> memory hard-errors and still correct an additional single bit error.
 - No performance penalty for mapped out devices
- Tukwila DDDC can improve system uptime and reduce DIMM replacement rates lowering overall service costs

Memory RAS Features (3/3)

- Memory channel Hot-Plug Support
 - Can be used for upgrades or to replace a faulty component without bringing down the system.
- Memory Migration and DIMM sparing
 - Copies memory from one physical location to another.
 - Using predictive failure analysis, this can avoid a system crash if memory goes bad.
 - Prepare for memory or field replaceable unit servicing
 - Migration provides more protection but requires more memory overhead (two memory channels), compared to DIMM sparing which only requires an extra DIMM.

Multiple levels of memory protection

QuickPath Interconnect RAS


- QuickPath Interconnect protection
 - Transient errors: Link Level Retry (N times) on CRC error
 - Two error detection "strengths": 8 bit CRC across one flit (80bits) or 16 bit CRC across two flits
 - Persistent errors: Reset of Physical layer
 - Hard errors: "Self-Healing" which means mapping out bad data or clock lanes on Physical layer reset
- Hot-Plug support
 - Can be used for upgrades or to replace a faulty component without bringing down the system
- Timeout mechanisms
 - To aid faulty component identification
- Error Containment mechanisms
 - Error signaling indicates scope of error. Eg. Data chunk, packet, or system
 - Provides opportunity to recover by killing the process instead of the whole machine

Tukwila implements all QuickPath Interconnect RAS features

26 August 2008 – HotChips 20, Copyright 2008 Intel Corporation

Intel[®] Itanium[®] Virtualization Hierarchy

Manageability Features

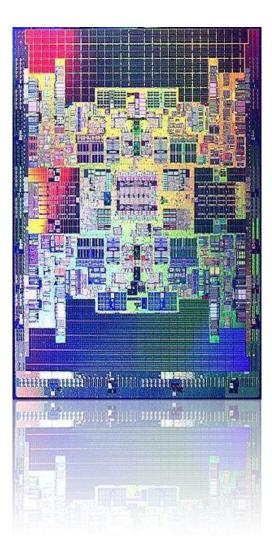
- Virtualization Enhancements: Vt-i extensions
 - Reduce latency by reducing instruction emulation code and reducing virtualization faults. This is achieved by:
 - New architecture state
 - New Guest copies of architecture state
 - New conditions using (selective) disable of virtualization faults
 - No Virtual Machine Monitor (VMM) modification required to receive the benefits of these extensions
- Dynamic Partitioning Support
 - Links can be enabled/disabled dynamically and snoop control and packet routing changed dynamically.
- Reconfiguration Support
 - Configuration registers can be dynamically changed via QuickPath Interconnect or via system management interface.

Improvements to Physical and Virtual Partitioning

Tukwila Status

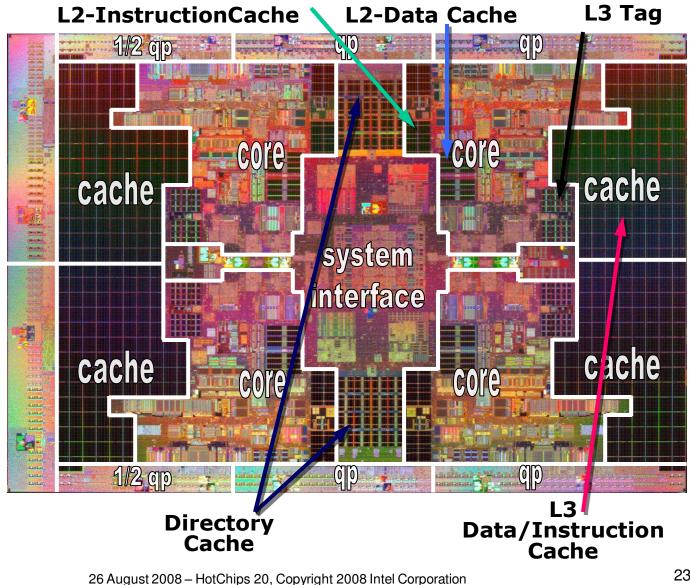
- Multiple OSes have booted: Linux, Windows (3 versions), and HP-UX.
 - More OSes expected to boot in the future!
- A wide range of platform topologies are in volume testing
 - 4 and 8 socket (32-64 threads) glueless and hierarchical SMP with OEM Node Controller
 - Common chipset with Xeon® MP.
- Multiple OEM platforms have powered on and are in validation.
- On-track to achieve 2x performance compared to the previous generation.

Targeted to strengthen the Itanium ecosystem comprising multiple OSes, hardware platforms, and enterprise applications


Conclusion

- Improved performance: Better TLP and ILP
- Improved scalability, platform flexibility, and headroom
- Power and frequency management
- Mission Critical RAS: Processor RAS, Memory RAS, QuickPath Interconnect RAS
- Manageability and Virtualization for resource management and efficiency

Designed for a leap in mission critical capabilities

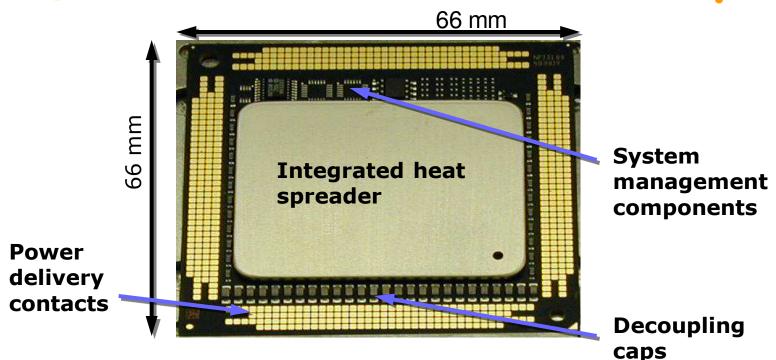


26 August 2008 - HotChips 20, Copyright 2008 Intel Corporation

Tukwila Caches

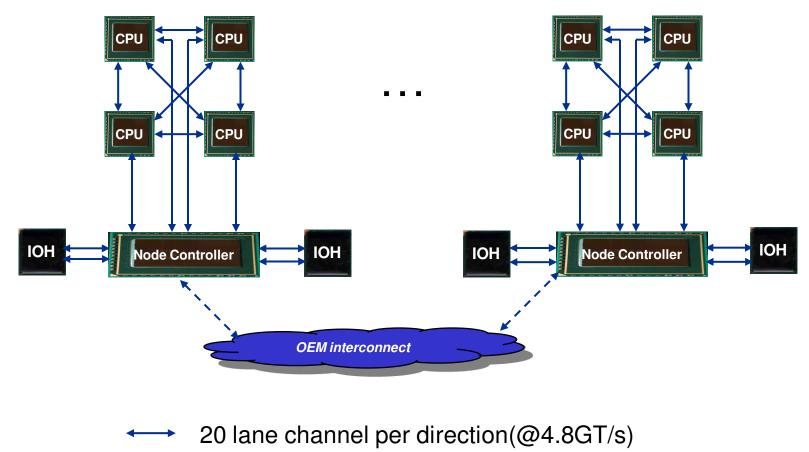
Cache Summary

	L1 Inst Cache per core	L1 Data Cache per core	L2 Inst Cache per core	L2 Data Cache per core	L3 Cache per core
Size	16 KB	16 KB	512 KB	256 KB	6 MB
Line Size	64-byte	64-byte	128-byte	128-byte	128-byte
Ways	4-way	4-way	8-way	8-way	12-way
Write Policy	-	WT	-	WB	WB
Latency	1 clk	1 clk	7 clks	5,7,9 clks ¹	15+ clks ¹
Protection	SEC ² via Parity	SEC ² via Parity	SEC ² via Parity	SEC ² via ECC	SEC ² via ECC


¹Add 1 clk for FP loads ²SEC: Single Bit Error Correction

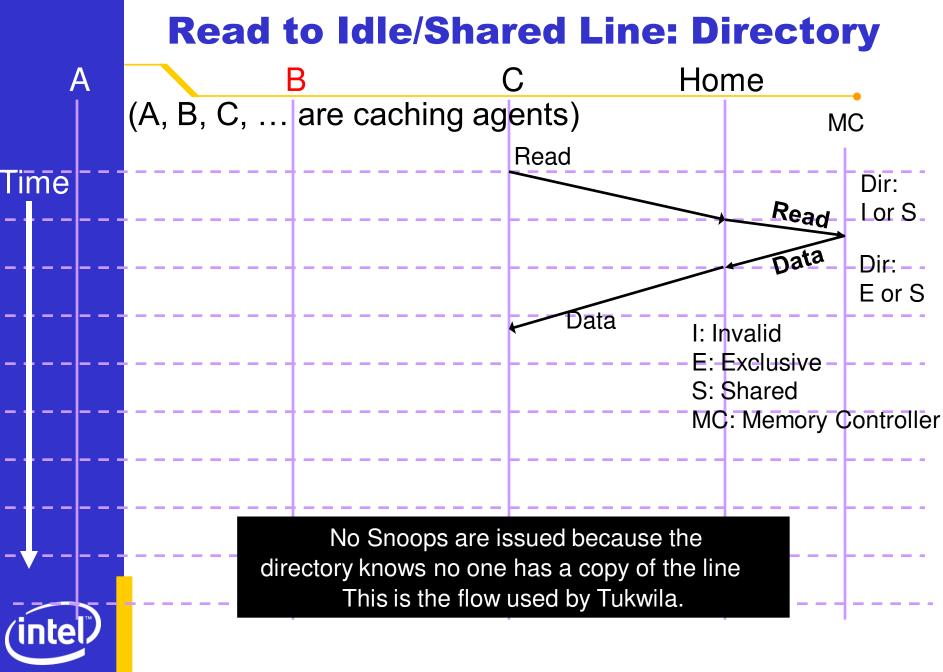
Note: Higher level caches do not force inclusion

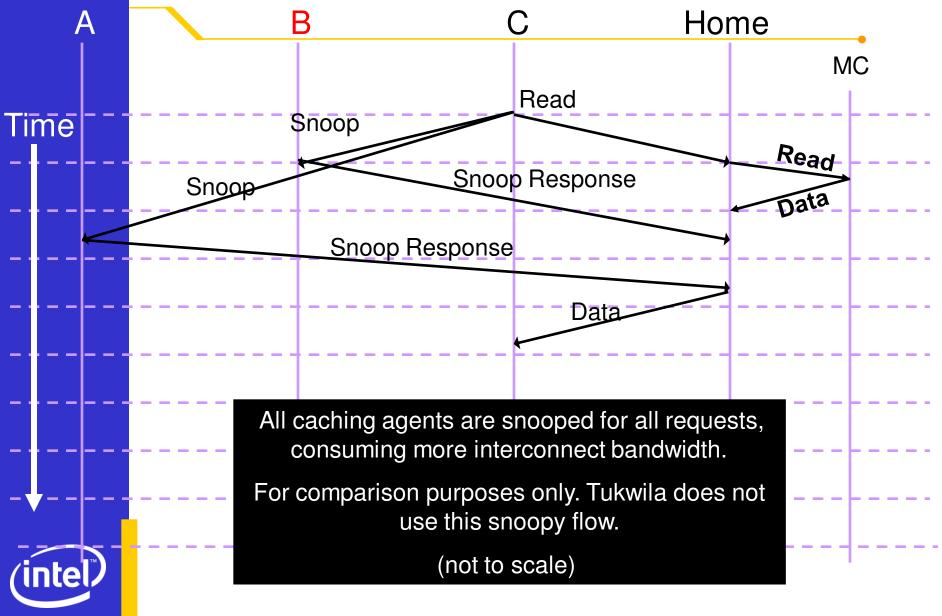
Tukwila's native cache line size is 128 bytes - Cache fills, writebacks & snoops converted into 2 QuickPath Interconnect 64 byte line transfers


Tukwila Die and Package details

- 65nm bulk CMOS, 8 layer Cu interconnect
- 2.05 billion transistors
- 32.5mm X 21.5mm = 700 mm2 die size
- 811 signal package pins in a 1248 pin LGA socket
- 5 major voltage and frequency domains

Example Hierarchical SMP


► Number, type, and size are OEM dependent.


RAS and Manageability Overview

- Tukwila **RAS** and **M**anageability features fall into these categories.
 - Processor (Core + Sysint) RAS
 - Memory RAS
 - QuickPath Interconnect RAS
 - Manageability and Virtualization
- Tukwila supports a large set of RAS+M features providing value across the entire platform:
 - Reliability:
 - Assurance that computational results are correct.
 - Availability:
 - Assurance that the system is available to perform computations.
 - Serviceability:
 - Assurance that the error is reported and that the faulty component can be identified and replaced.
 - Manageability and Virtualization:
 - Ability to configure and/or share resources to handle error events or to increase system utilization and efficiency

Read to Idle/Shared Line: Snoopy

26 August 2008 - HotChips 20, Copyright 2008 Intel Corporation