REAL – TIME HD

"Ready, Fire, Aim - 20 years of hits & misses at Hot Chips"

Major Technology Misses of the 80's and 90's

Howard Sachs

August 21, 2008

RISC Revolution of the 80's and 90's

- Most computers in 1980 were built with bipolar small scale integration
 - Fast transistors but a large penalty for their interconnect
 - Perhaps up to 20k transistors per bipolar chip
- CMOS allowed up to 200k transistors for the first time on a single chip
 - ♦ Bipolar defect densities were 4x CMOS resulting in poor yields
- Simple machines called RISC machines were able to be built on
 - a single chip because of high CMOS yields
 - Interconnect was a small part of the overall delay
 - Gates were relatively slow
 - Simplicity of ISA allowed a good clock rate
 - Clock rates were in the 20 to 33MHz range were achieved
 - Very low cost systems could be built
 - Very low power was achieved
- Many of these projects were underway
 - ♦ Sun, MIPS, Fairchild, National, IBM, etc
 - Performance (clock rate & IPC) drove technology decisions

telairity Technology Options in the 80's and 90's

ECL

- Well understood, around a long time ∻
- Very High frequency transistors ∻
- All the fastest main frame computers and super computers used ∻ ECL
- Poor yield compared with CMOS ∻
- Very high power ∻

CMOS

- New technology replacing NMOS 2U process node in ~1985 ∻
- ∻
- Slow compared to bipolar ∻
- Very low power ∻

GAS

- ∻
- New technology NMOS, no complimentary transistor 3x the mobility of Si ∻
- ∻
- Low power compared with bipolar ∻
- High power compared with CMOS ∻

ECL & GAS Risc machines of the 80's and 90's

- Why did all of these companies try ECL or GAS projects
 - Fear CMOS would not scale because of the wavelength of visible light and frequency would be limited
 UV, Deep UV, OPC.....
- Companies that tried ECL projects
 - Sun, MIPS, Intergraph, MicroUnity, Exponential, BIT, others??
- Companies that released products
 - Almost none
- Why for ECL?
 - Cost was high compared with CMOS
 - Power was high
 - Density was low
 - Killer! CMOS delivered on Moores law
- Why for GAS?
 - Power was high
 - CMOS manufacturing was more mature than GAS
 - ♦ Killer! CMOS delivered on Moores law

Sun Sparc example

- BIT SPARC processor
 - ♦ 1989-ECL
 - ♦ 4- chips
 - ♦ 80MHz
 - ♦ 1.2 U process, 3 layer metal, 4/8U metal pitch
 - \diamond IU = 125k transistors, FPC=36k transistors
 - ♦ 20W
 - Some may have been used by Floating Point Systems
 - No real production, 0.8U CMOS killed it!
- Prisma Supercomputers
 - ♦ 1989-GAS
 - ♦ Gigabit (old Rockwell?)
 - Sub micron technology (GAS foundries were always one generation ahead of CMOS, Marketing hype)
 - ♦ 250MHz
 - ♦ 112 pin chips, 5mm x 4mm
 - ♦ 49 chips at 500 Watts
 - Never completed

Intergraph Example

- E1 processor 1988, 2U ECL
 - ♦ 48 ECL GA
 - ♦ 15 GA types
 - ♦ 500 W
 - ♦ 150MHz
 - ♦ No production, C4 @ 0.8U CMOS ran at 100MHz
 - ♦ Power, Cost not competitive

Microunity Example

• CML processor 1995

- ♦ 1GHz
- ♦ 0.35 U Bipolar in-house fab
- No prototype, design only
- No manufacturing yield
- Power, Not able to manufacture

MIPS example

• R6000

- ♦ ECL
- Made by BIT
- ♦ 60MHz
- A few may have been used by CDC in their servers
- Overshadowed by R4000 in 1991 which was CMOS and ran at 100MHz
 - Cheaper, faster, lower power

Foundries in 1990

GAS Foundries

- ♦ Fujitsu (now only for communications)
- ♦ Rockwell (sold)
- Vitesse (Communications products)
- ♦ IBM (I think research only)

• ECL Foundries

- ♦ Fujitsu
- ♦ Fairchild
- ♦ Hitachi
- ♦ IBM

Conclusion

• Things that were not understood in the late 80's

- Moore's Law would continue for the foreseeable future
- CMOS yield and ease of scaling was much better than other technologies
- ♦ Up until the 80's computers were expensive
 - Everyone thought that they would stay expensive
 - Cost became important
 - Power became important
- At higher speeds interconnect problems dominated so high density was important
 - Older ECL technologies like the Cray computers with SSI (small scale integration) were very powerful at low clock rates but could not scale to higher frequencies