NVIDIA Tegra

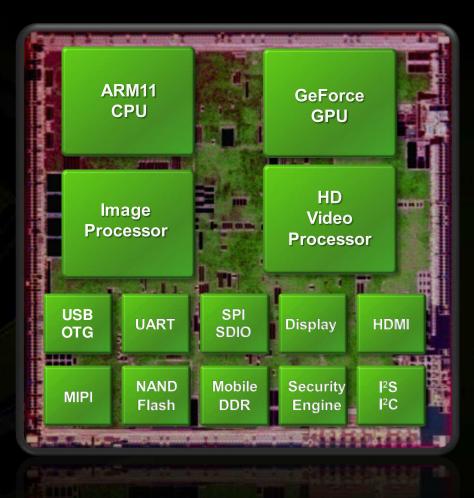
Michael Toksvig, Distinguished Engineer, NVIDIA Mobile Co-authors: Parthasarathy Sriram, John Matheson, Brian Cabral, Brian Smith

B

April 15th is the last day to make your 2007 contributions to a Fidelity IRA.

Agenda

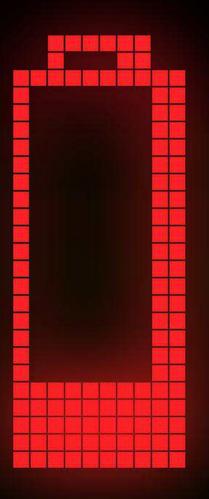
- What is NVIDIA Tegra?
- The Challenge
- 3D Features
- Interesting Features
- 3D Performance
- Demos


What is NVIDIA Tegra?

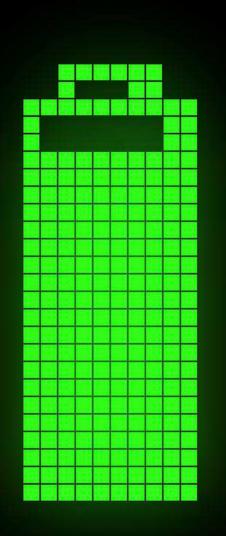
Complete Computer on a Chip

Tegra Family

	APX 2500	600	650
Max. LCD Resolution	854x480	1280x1024	1680x1050
Video decode	720p 30 fps	720p 30 fps	1080p 24 fps
Video encode	720p	720p	720p
CPU speed	600 MHz	700 MHz	800 MHz
Memory speed	166 MHz	166 MHz	200 MHz
IDE support	Νο	Yes	Yes


The Challenge: Power

A good cell-phone battery holds 1100 mAh


- Lithium-Ion batteries are 3.7 volts
- 1100 mAh * 3.7V ~ 4 Wh

Improves only 5% per year

The Challenge: MP3 playback

- Just how little is 4 Wh?
- Assume your system burns only 250mW
 - Audio processor, CPU, memory controller
 - IOs, RAM, flash storage, DAC...
- Further assume 85% PMU efficiency
- 4000 mWh * 85% / 250 mW = 13.6 hours
- Tegra can provide over 100 hours of MP3

The Challenge: Video playback

Imagine if your system could play HD video
 While burning only 2000 mW

- Video processor, CPU, memory controller
- IOs, RAM, display, HDMI output...
- 4000 mWh * 85% / 2000 mW = 102 minutes

Tegra can provide 10 hours of HD video
Whole chip burns well below 200 mW

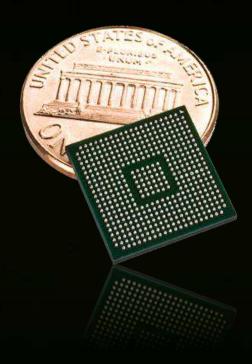
The Challenge: Doing nothing

What your phone does before it rings Determines how often you must recharge it

Tegra can provide weeks of nothing Chip burns 10s of µWatts in deep sleep

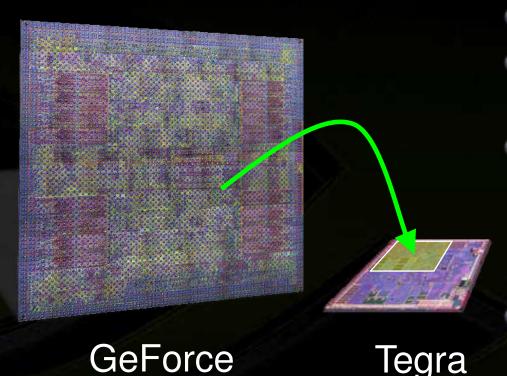
The Challenge: Gaming

Tegra can provide over 5 hours of 3D gaming


Core power is only about 200 mW

Backlight is a hog

The Challenge: Size



- APX package is 12 x 12 mm
- Size of a fingernail
- And almost impossibly thin
- Imagine the size of the circuit board in your cell phone
 No one asks for a bigger chip

Ultra Low Power GeForce

- Power was a major challenge
 Major rearchitecture required in some areas
- But both low power and high performance require maximum efficiency

So cost functions are quite similar to GeForce

Ultra Low Power GeForce

Fully programmable vertex and pixel shaders

- High level GLSL programming language
- Floating point top to bottom
- OpenGL ES 2.0

- OpenGL 2.0 without the fixed function
- Similar to DirectX 9
- Very high quality anisotropic filtering
- Stencil, Multiple Render Targets
- HDR rendering, HDR textures

A Real, Modern GPU

Interesting design decisions

Early-Z and fragment caching

- These are big computation and bandwidth savers
- Ultra Efficient 5x Coverage Sampling Anti-Aliasing Scheme
 - Mobile version of CSAA technology from GeForce
- Not a tiling architecture
 - Tiling works reasonably well for DX7-style content
 - For DX9-style content the increased vertex and state traffic was a net loss
 - Not a unified architecture
 - Unified hardware is a win for DX10 and compute
 - For DX9-style graphics, however, non-unified is more efficient

Ultra Low Power GeForce Performance

Tegra APX can achieve:

- Over 40M triangles/sec
- Up to 600M pixels/sec
- Texture 240M pixels/sec
- Run Quake 3 Arena
 - 45+ fps WVGA (800 x 480)
 - 8x Aniso Texture Filtering
 - 5x Coverage Sampling AA

High Definition Audio Video Processor

High Definition Audio Video Processor

Video/Image Codec

High Definition Decode

- 1080P/720P decode
- Peak bit-rate of 14-20 Mbps
- H.264, VC1 and MPEG-4

High Definition Encode

- Up to 720P resolution
- H.264 and MPEG-4
- Peak bit-rate of 10 Mbps
- Flexible Macroblock mode selection

Baseline JPEG

- Decode and Encode
- Maximum resolution of 256 MP
- 4:2:0, 4:2:2, 4:4:4, 4:2:2R support

Audio

- Formats supported
 - AAC-LC, AAC+, eAAC+
 - AMR-WB, AMR-NB
 - WMA7, 8, 9
 - WMA10 Pro LBR
 - MP3
 - PCM
 - SBC
 - Real Audio 8, 9, 10
 - MIDI Ringtone

High Definition Audio Video Processor

Broadcast TV

ISDB-T, DVB-H, DVB-T, T-DMB

Optimized mobile viewing experience

- High-resolution display
- High-quality video playback
- Over 9 hours of continuous live TV

Tegra CPU

ARM11 Core, optimized for high performance

- 32K I and 32K D L1 caches
- 256K L2 cache exclusive with L1
- Low latency path to DRAM
- Up to 800 MHz operation
- Importantly also optimized for low power
 - Caches reduce power hungry DRAM accesses
 - A dedicated PLL means the CPU runs just fast enough
 - Extensive clock gating
 - The media processing is done by hardware units, which is much more power efficient than doing it in software

Tegra Memory Controller

Challenge is to share 1.6 GB/s of 200 MHz LP-DDR efficiently

- Optimize DRAM page usage
- Maximize bandwidth for the multi-media clients
- Minimize CPU latency for maximum performance
- High priority for real time display and camera
- Extensive modeling to balance these

While still minimizing power

- DRAM clock stopping and standby modes
- Minimize expensive pre-charge/activates
- Dynamic frequency and voltage scaling

Image Signal Processor (ISP)

- Image processing for 12 Megapixel camera burst mode
- Also needed during video encode, 720p at 30 fps
- Roughly 1.6 GOPS of image processing required
 - Lens shading
 - De-noising
 - **De-mosaicing**
 - Color correction
 - Sharpening
 - Contrast enhancement
 - **Special effects**

ISP Example: Color artifact reduction

Reduces noise and false chroma ringing in shadows and high frequency regions

ISP Example: Auto White Balance (AWB)

Make white objects look white under various illuminants

Too yellow

Corrected

ISP Example: Bilateral noise reduction filter

Small sensors with high resolutions => tiny noisy pixels

APX 2500 Development Platform Demos

AP	NVIDIA APX 2500
Memory	256MB DDR, 8GB NAND
Display	Sharp 4" WVGA (800x480x24bit)
HSDPA	Infineon SGOLD3H
Audio	Wolfson WM8753L
WiFi	Atheros 802.11b/g
BlueTooth	Murata CSR BC5FM
GPS	SiRF
Mobile-TV	Siano DVB-H / DVB-T / T-DMB
Imaging	5MP & VGA Micron Sensors

APX 2500 Demos...

Also come to the lobby after the talk...

Summary

Horsepower close to XBOX Quality & Features comparable to PLAYSTATION 3 Tiny and eats power LIKE A BIRD