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Server-Class Processor: Unconstrained Power
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Processor Power Pie-Chart: Another View 

 High performance processors (prior/current generation) typically burn 

most of their power in the clocked latches and arrays (registers, 

caches).
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Hotspots limit performance, reliability & increase costs

As we go forward (towards decreasing technology nodes):

- Hotspot factor (overhead) is likely continue to increase

- predictability of hotspots will be more difficult

(multicore, SoC, power / thermal management, variability etc.)

In addition: Non-uniform power distribution or hotspots aggravate 

challenges significantly:

H. Hamann, from ISCA08 Tutorial

Non-uniform Power Distribution
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Metrics Overview: An architect’s View
 Performance metrics:

– delay (execution time) per 
instruction; MIPS

• CPI (cycles per instr): abstracts out 
the MHz

• SPEC (int or fp); TPM: factors in 
benchmark, MHz

 energy and power metrics:

– joules (J) and watts (W)

 joint metric possibilities (perf and 
power or temperature)

– watts (W): for ultra LP processors; 
also, thermal issues

– MIPS/W or SPEC/W ~ energy per 
instruction

• CPI * W: equivalent inverse metric

– MIPS2/W or SPEC2/W  ~ 
energy*delay (EDP)

– MIPS3/W or SPEC3/W  ~ 
energy*(delay)2 (ED2P)

– (Peak Temp) * (Execution Time)
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System-level perf/watt for commercial OLTP

is quite different from processor-level SPECint/watt !
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Fundamental Efficiency Determinants

 Fundamental microarchitectural knobs that determine efficiency 

– optimal pipeline depth at the core-level

– optimal core complexity and number of cores

– type of clock-gating and power-gating (if applicable): coarse-grain vs. fine-grain

– adaptive microarchitectures: [to control unnecessary energy waste]

– etc…

 Fundamental logic/circuit-level efficiency features

– support for clock-gating (area and verification-efficient)

– support for voltage and frequency scaling (performance, reliability and 

verification-friendly)

– (Near)-optimal mix of low, medium and high-Vt devices

– area and power efficient latch design

– etc..
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Deducing Optimal Pipe Depths
V. Srinivasan et al., MICRO-35, 2002
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Integrating Multiple Cores on Chip

 With uniprocessor performance improvements slowing, multiple 

cores per chip (socket) will help continue the exponential system 
performance growth

 Exploit performance through higher levels of integration in chips, 

modules, and systems

 Invest power in chip-level performance rather than core performance
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Adaptive Microarchitecture Principles

 Basic concepts: 

– use (i.e. power or clock) a storage, compute or interconnect (e.g. bus) 
resource only to the extent needed: adapt or reconfigure dynamically 
in tune with workload resources

• Predictive power-gating to reduce leakage

• Dynamic resizing of queues, buffers, caches

– dynamically change a bandwidth parameter to conserve power

• Adaptive fetch to minimize speculative waste

• Adaptive prefetch to conserve bus bandwidth and prefetch logic usage; 
reduce speculative waste (cache pollution)

• etc….

 Issues that prevent widespread adoption in high-end processors:

– complexity (verification cost, overhead area/power)

– relatively small power savings, if performance loss is not tolerable

In general, dynamic voltage-frequency scaling (DVFS) offers 
the most efficient knob for power management
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Multithreaded Instruction Flow in Processor Pipeline
(transition from POWER4 to POWER5)
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Energy Per Useful Instruction: POWER4+ vs. POWER5
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Active Power Savings from Clock-Gating (% over baseline) 
(POWER5: pre-silicon projections)

STSMT

Note: post-silicon hardware-based analysis shows good agreement at the chip level 
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P. Chaudhary, SPSICOMP, Mar. 2008
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Benefit of Fine-Grain Clock Gating in POWER6 
pre-silicon simulation
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– SPEC2K                                24%

– Commercial                          26%

– RFCTH                                 20%

– POP                                     25%
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Clock Gating – Temperature Benefit

Temperature Versus Frequency
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Comparative Summary on Clock-Gating Efficiency 

 Clock gating benefit

– POWER4: performance-centric, with minimal clock-gating

– POWER5: SMT throughput boost, matched with fine-grain 
clock-gating to manage power

– POWER6: High frequency performance boost  with 
aggressive, fine-grain clock-gating to manage power and 
thermals

Net: progressive improvement with POWER6 being the 
best
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Peak Temperature: SMT vs. CMP 
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3 heat-up mechanisms

 Unit self heating
determined by the 
power density of the 
unit

 Lateral thermal 
coupling between 
neighboring units

 Global heating through 
TIM (thermal interface 
material), heat 
spreader, and heat sink

P. Bose, VLSI Design 2005, quoted from Y. Li, Z. Hu et al. 2004

SMT: area-efficient, thermally-efficient
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A brief look now at a different system product space ….
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D. Grice, SCICOMP-14, March 2008; http://www.spscicomp.org/
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Hardware Integration in BlueGene/L:
System-on-a-Chip ASIC

• IBM CU-11, 0.13 µm

• 11 x 11 mm die size

• 25 x 32 mm CBGA

• 474 pins, 328 signal

• 1.5/2.5 Volt

Integrated functionality
• Two PPC 440 cores
• Two “double FPUs”
• L2 and L3 caches
• Torus network
• Tree network
• JTAG
• Performance counters
• EDRAM
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Green500 

Rank

MFLOPS/Watt Computer

(all IBM)

Total Power

(kW)

Top 500 

Rank

1 488.14 Roadrunner

BladeCenter 

QS2 –
PowerXCell 8i

22.76 324

1 488.14 Roadrunner 18.97 464

3 437.43 Roadrunner 2345.50 1

4 371.75 Blue 

Gene/P

31.50 304

4 371.75 BG/P 31.50 305

4 371.75 BG/P 94.50 306

7 371.67 BG/P 63.00 52

7 371.67 BG/P 94.50 75

7 371.67 BG/P 126.00 51

7 371.67 BG/P 63.00 37

The Green500 Top 10 (http://www.green500.org)
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Concluding Remarks [Based on POWER Systems experiences so far]
 Power-performance tradeoff analysis must be integral part of early-stage definition of 

microprocessors

– Fundamental design decision errors can lead to post-silicon power overruns and/or 
performance shortfalls

– Pre-silicon power-performance modeling and validation methodology: key investment 
needed to prevent post-silicon surprises

– Power analysis and tuning must percolate through all stages of design, with closed loop 
feedback to higher levels.

– Temperature-aware vs. power-aware: needs careful balance

 Power-aware microarchitecture techniques: can be a key lever in future power 
reduction at the chip and system level

– But, co-design with circuit/technology and software groups is key

 Power “optimization” in server-class, high-end systems can be quite different from that 
in embedded systems

– System-level power-performance efficiency requires careful separation of emphasis on 
efficiency at the processor, memory and system sub-components

– IBM’s POWER  Systems microprocessors have been designed with system-level 
efficiencies in mind and have proven to be very successful offerings in the Green 
Computing Era.
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BACKUP: Some Key Research Issues of the Future
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Advancing the State-of-the-Art in Clock Gating

 M1-level simulation (FPU)

– Transparent clock gated pipeline

 FPU0 with Shallow Pipeline Morph (TSP)

0

10

20

30

40

50

60

70

80

90

100

fld
ax

py
_f

ld
di
vi
de

_TS
P5

fld
ax

py
_f

ld
do

t_
TSP5

fld
ax

py
_f

ld
fft

_T
SP5

fld
ax

py
_f

ld
i4
l0

1_
TSP5

fld
ax

py
_f

ld
i4
l0

2_
TSP5

fld
ax

py
_f

ld
i4
l2

0_
TSP5

fld
ax

py
_f

ld
i4
l2

3_
TSP5

fld
ax

py
_f

ld
i4
l2

9_
TSP5

fld
ax

py
_f

ld
i4
l3

5_
TSP5

fld
ax

py
_f

ld
i4
l4

1_
TSP5

fld
ax

py
_f

ld
i4
l4

2_
TSP5

fld
ax

py
_f

ld
i4
l4

3_
TSP5

fld
ax

py
_f

ld
i4
l5

9_
TSP5

fld
ax

py
_f

ld
i4
l5

9_
p6

_T
SP

5

fld
ax

py
_f

ld
i4
l6

3_
TSP5

fld
ax

py
_f

ld
i4
m

atb
_T

SP5

fld
ax

py
_f

ld
sq

rt_
TSP

5

fld
ax

py
_f

lin
ti4

l0
2_

TS
P5

fld
ax

py
_f

lk
i4

l0
4_

TSP
5

fld
ax

py
_f

lk
i4

l0
5_

TSP
5

fld
ax

py
_f

lk
i4

l0
9_

TSP
5

fld
ax

py
_f

lm
i4
ld

0s
tm

2_
TSP5

fld
ax

py
_f

lm
i4
ld

1_
TSP5

fld
ax

py
_f

lm
i4
ld

16
st

1_
TSP5

fld
ax

py
_f

lm
i4
ld

3s
tm

1_
TSP5

fld
ax

py
_f

lm
i4
ld

4s
t2

_T
SP5

fld
ax

py
_f

lm
i4
ld

4s
t2

_p
6_

TSP
5

fld
ax

py
_f

lm
i4
ld

4s
t2

_s
to

nly
_T

S
P5

fld
ax

py
_f

ls
di

vi
de

_T
SP5

fld
ax

py
_f

ls
i4

l4
1_

TSP
5

fld
ax

py
_f

ls
i4

l4
2_

TSP
5

fld
ax

py
_f

ls
sq

rt_
TS

P5

C
lo

c
k
 P

o
w

e
r 

in
 %

 v
s
.

tr
a
d
it
io

n
a
l 
s
ta

g
e
-l

e
v
e
l 
c
lo

c
k
 g

a
ti
n
g

FPU0

0

10

20

30

40

50

60

70

80

90

100

aix_tpccora51_TSP5

as400_cpw252_TSP5

tpcc_db2-tpcc_TSP5

as400_testn3_TSP7

as400_trade2ejb52_TSP7

as400_testt_TSP7

as400_trade2ejb52j_TSP7

C
lo

c
k
 p

u
ls

e
s
 i
n

 %
 f

o
r

T
C

G
 v

s
. 
o

p
a
q

 c
lk

 g
a
ti

n
g

FPU1

0

10

20

30

40

50

60

70

80

90

100

aix_tpccora51_TSP5

as400_cpw252_TSP5

tpcc_db2-tpcc_TSP5

as400_testn3_TSP6

as400_trade2ejb52_TSP6

as400_testt_TSP6

as400_trade2ejb52j_TSP5

FLTLOOPS

Commercial / TPC-C

Ref: H. Jacobson et al., ISLPED04, HPCA-05



Systems and Technology Group + Research Division

© 2008 IBM Corporation27 |  Hot Chips 2008 August 2008

Dynamic mgmt of power, temperature, noise, reliability, performance….

Across-die monitored variability )in perf, power, temp, Vdd, …)  will increase in the
multi/many-core area. Effective control and management will require integrated,
hierarchical, closed-loop feedback control mechanisms

•On-chip controller can also serve
as static (v,f) setting device for 
effective yield and good baseline
performance
•Per-core DFVS: costly and requires
async interfaces to bus/fabric; also
further exacerbates soft error rates
•Control loop stability issues must
be analyzed (pre-silicon)
•Simple, scalable global DVFS 
control algorithms: optimize perf for 
given power budget

Per-core power/perf
information

Global Monitoring 
and Control

GLOBAL MANAGEMENT

Chip power 
budget
Thread-core 
affinities

Global 
power/perf 

information

Per-core power 
modes

OS

Application

Local Monitoring and Control

Thread/Resource 

scheduling

Load balancing

Virtual 

Machine

C. Isci, A. Buyuktosunoglu, C-Y-Cher, P. Bose, M. Martonosi, MICRO-39, 2006
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POWER6 Chip Overview

 Ultra-high frequency dual-core chip

– 7-way superscalar, 2-way SMT core

– 9 execution units

• 2LS, 2FP, 2FX, 1BR, 1VMX,1DFU

– 790M transistors

– Up to 64-core SMP systems

– 2x4MB on-chip L2

– 32MB On-chip L3 directory and controller

– Two memory controllers on-chip

– Recovery Unit

 Technology

– CMOS 65nm lithography, SOI

 High-speed elastic bus interface at 2:1 freq

– I/Os: 1953 signal, 5399 Power/Gnd
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Research Issue: power-efficient RAS microarchitecture

in the face of increasing SER and other sources of unreliability

K. Reick et al. Hot Chips-2007
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POWER5 Hotspot Patterns

Thermal map Power map

-50 different workloads for POWER5 imaged & analyzed
•HotGen microbenchmark generator tool 

- observed significant differences in circuit utilization

(H. Hamann et al., ISSCC-2006)
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Leveraging Spatial Heat Slack
Activity Migration reduces Hotspots

% slow down 0.1 -1.1 -0.5 0.4 1.0 1.1 1.6 0.9 2.5

Summary: Core-hopping (4ms) reduces maximum on-chip 

temperature 
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A Page from IBM EnergyScale for POWER6 Systems
http://www-03.ibm.com/systems/power/hardware/whitepapers/energyscale.html


