

Network Based Coherency: Extending a Processor's Coherency Domain over a Standard Network

Bob Quinn, Isam Akkawi, Krishnan Subramani, Shahe Krakirian August 2008

Why Network Based Coherency?

Current data center problems

- Low server utilization
- Rigid resource configurations with slow and expensive moves, adds & deletes
- Solution Scalable servers with dynamically provisioned CPU, memory & IO resources

Guest OS

Processor Interconnect Trends

Cache Coherency Evolution from a Bus to a MicroNetwork

Integrated Hardware Support for Virtual Machine Monitors

- Nested page tables
- Fast switching between VMM and guest
- Virtual interrupt support
- VMM intercept of selected events or instructions

Next Step: Coherent Network

Network used as coherent interconnect fabric for servers

- Hardware provides Coherent Distributed Shared Memory view & low-level I/O
- Software virtualizes CPU, Memory, and IO to the OS/App

The Coherent Network Controller

Physical Servers (nodes)

Coherent Network Controller: 3Leaf TL1550

Dual coherent HT ports

- Up to 8GB/sec total bandwidth per port (16b * 1GHz DDR each direction)
- Hardware managed cache coherency
- Manages up to 1TB of memory

Dual IB/Ethernet fabric ports

- 4x InfiniBand DDR & SDR (up to 20 Gbps each direction), Version 1.2 compliant.
- 802.3 10GBASE-CX4 (up to 10Gbps each direction, 20Gbps also supported)
- Integrated Serdes: No external PHY required
- Reliable delivery across fabric

Requirements for running coherent memory transactions over fabric

- Short packets \rightarrow Need very low transport overhead
- Guaranteed in order end-to-end delivery
- Multiple paths for high availability
- Layer-2 agnostic
- Capability to share fabric with non-coherent transactions (e.g. IO)

3Leaf Reliable Delivery Protocol

- Very light weight transport
- Runs over IB link layer or Ethernet MAC layer low loss fabric
- Automatic retry on fabric errors -- error recovery in micro-seconds
- Automatic path failover
- Supports Multiple transaction level protocols
 - Coherent Memory protocol
 - Messaging
 - DMA
 - Reliable multicast
- Multiple Virtual channels

RDP Packet Overhead

RDP Header

Bit	31 30	29 28	27 26	25 24	23	22 21	20	19 1	8 17	16	15	14	13 1	21	111	0	8	7	6	5	4	3	2	1	0
0	0x3	Ver =0	AP	VC	CmdCode				Se	SendRN SendSN_LSB															
1	DstLNID						SrcLNID																		

RDP over InfiniBand Packet

Bit DWORD	31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0							
	Transmit first	Transmit 2 nd	Transmit 3 rd	Transmit last							
0 1	IB Local Route Header (LRH)										
2 3	RDP Header										
4 n	RDP Payload (0 to 47 DWORDs)										
(n+1) (n+2)	RDP Acks (1 to 2 DWORDS)										
(n+3)	IB Invariant CRC										
(n+4)	IB Varia	ant CRC									

IB + RDP overhead: 28 bytes

Includes SOP & EOP

RDP Ack

RDP over Ethernet Packet

Ethernet + RDP overhead: 54+ bytes

- Frame overhead (Headers, Acks, FCS): 34 bytes, pad to 64 bytes if needed
- Preamble + IFG: 20 bytes

TL1550 Coherent Memory Manager

Manages cache coherent Distributed Shared Memory across multiple nodes

TL1550 behaves like another x86 CPU socket on the node

- For local request to remote memory
 -> like CPU Memory
- For remote nodes to local (Home) memory ->like another CPU

144MB Node Cache

- Reduces remote memory latency
- Hardware managed line caching
- Software allocated, hardware managed page-caching

Latency Management

- OS level ccNUMA awareness
- Page placement (3Leaf Software)
- Page replication (3Leaf Software)
- Page caching (3Leaf Software + TL1550)
- Line caching (TL1550)
- Coherence acceleration (TL1550)

144MB Node Cache optimizes latency

Fast stores to shared data

- Commit stores to shared data before it is globally visible
- Preserves processor read-write ordering
- Low latency store to shared data
- Per-page configuration
- Lockdown Fast store from local CPU
- Blocking Fast invalidate from remote CPU
- Delayed Blocking
 - Delay between FI response and blocking
 - Utilizes fabric delay to overlap HT invalidate latency

Fast Invalidate – Lockdown

- FI response to local Req before remote sharers have been invalidated
- Blocks local data until the remote sharers have been invalidated
- Data from remote nodes to local node is not affected by this Lockdown

Fast Invalidate – Blocking

- FI response to before the CPU caches are invalidated
- Blocks remote data until the local CPU caches have been invalidated
- Data from the local node to the remote nodes is not blocked

Fast Invalidate Lockdown with Enhanced Blocking

Fast Invalidate – Pros and Cons

Lockdown – Fast store from local CPU

- Pros
 - Latency of store to shared data is similar to store to local memory
 - CPU does not "see" latency of remote invalidates
 - TL1550 preserves x86 read-write ordering semantics
- Cons
 - Subsequent remote requests could be delayed due to Lockdown

Blocking – Fast invalidate from remote CPU

- Pros
 - Overlaps invalidates from remote nodes with switch latency
 - Impact of Blocking in Remote node reduced by Enhanced Blocking
 - TL1550 preserves x86 read-write ordering semantics
- Cons
 - Subsequent remote requests could be delayed due to Lockdown

TL1550 Technology Summary

- Technology: TSMC 90 nm GT
- Operating Frequency: 400 Mhz
 - Standard ASIC design flow
- Gate count: 6 M gates
- SRAM bits: 24.8 Mb (Repairable)
- Total IO: 607
- Die Size: 10.7 mm x 10.3 mm
- Package: 1207 OLGA
- Compatible with Torrenza socket (Socket F)
 - Standard for Opteron and Opteronbased co-processors
- Power: <20W</p>

