
Patrick Legresley

CUDA Performance Optimization

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008 2

Optimizations

  Kernel optimizations

  Maximizing global memory throughput

  Efficient use of shared memory

  Minimizing divergent warps

  Intrinsic instructions

  Optimizations of CPU/GPU interaction

  Maximizing PCIe throughput

  Asynchronous memory copies

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008 3

Coalescing global memory accesses

  A coordinated load/store by a half-warp (16 threads)

  A contiguous region of global memory

   64 bytes - each thread accesses a 32-bit word: int, float, …

  128 bytes - each thread accesses a double-word: int2, float2, …

  256 bytes - each thread accesses a quad-word: int4, float4, …

  Additional restrictions

  Starting address for a region must be a multiple of region size

  The kth thread in a half-warp must access the kth element in a

block

  Exception: not all threads must be participating

  Predicated access, divergence within a half-warp

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008 4

Coalesced Access: floats

t0 t1 t2 t14 t15 t3

t0 t1 t2 t14 t15 t3

132 136 184 192 128 140 144 188

132 136 184 192 128 140 144 188

Some threads do not participate

All threads participate

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008 5

Uncoalesced Access: floats

t0 t1 t2 t14 t15 t3

132 136 128 140 144

Permuted access by threads

184 192 188

Misaligned starting address (not a multiple of 64)

t0 t1 t2 t13 t15 t3

132 136 184 192 128 140 144 188

t14

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008 6

Coalesced Access: float3

  Use shared memory to allow coalescing

  Threads read a block of floats into shared memory in a

coalesced way

  Need sizeof(float3) * (threads per block) bytes of shared
memory

  Processing

  Each thread retrieves its float3 from shared memory

  Rest of the compute code does not change

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008 7

Coalescing: Timing Results

  Experiment

  Kernel: read a float, increment, write back

  3M floats (12MB)

  Times averaged over 10K runs

  12K blocks x 256 threads reading floats

   356µs – coalesced

   357µs – coalesced, some threads don’t participate

  3,494µs – permuted/misaligned thread access

  4K blocks x 256 threads reading float3s

  3,302µs – float3 uncoalesced

   359µs – float3 coalesced through shared memory

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008 8

Coalescing:

Structures of size ≠ 4, 8, or 16 bytes

   Use a Structure of Arrays (SoA) instead of Array of Structures (AoS)

   If SoA is not viable

   Force structure alignment: __align(X), where X = 4, 8, or 16

   Use shared memory to achieve coalescing

x y z Point structure

x y z x y z x y z AoS

x x x y y y z z z SoA

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008 9

Coalescing (Compute 1.2+ GPUs)

  Much improved coalescing capabilities in 10-series

architecture

  Hardware combines addresses within a half-warp into

one or more aligned segments

  32, 64, or 128 bytes

  All threads with addresses within a segment are

serviced with a single memory transaction

  Regardless of ordering or alignment within the segment

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008 10

Compute 1.2+ Coalesced Access:

Reading floats

t0 t1 t2 t14 t15 t3

132 136 128 140 144

Permuted access by threads

184 192 188

Misaligned starting address (not a multiple of 64)

t0 t1 t2 t13 t15 t3

132 136 184 192 128 140 144 188

t14

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008 11

Compute 1.2+ Coalesced Access:

Reading floats

Misaligned starting address (not a multiple of 64)

t0 t1 t2 t13 t15 t3

120 124 168 176 116 128 132 172

t14 t4

32-byte segment 64-byte segment

Transaction size recursively reduced to minimize size

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008 12

Textures in CUDA

  Texture is an object for reading data

  Benefits

  Data is cached (optimized for 2D locality)

  Helpful when coalescing is a problem

  Filtering

  Linear / bilinear / trilinear

  dedicated hardware

  Wrap modes (for “out-of-bounds” addresses)

  Clamp to edge / repeat

  Addressable in 1D, 2D, or 3D

  Using integer or normalized coordinates

  Usage

  CPU code binds data to a texture object

  Kernel reads data by calling a fetch function

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008 13

Texture Addressing

Wrap

   Out-of-bounds coordinate is

wrapped (modulo arithmetic)

Clamp

   Out-of-bounds coordinate is

replaced with the closest
boundary

0 1 2 3 4

1

2

3

0
(5.5, 1.5)

0 1 2 3 4

1

2

3

0
(2.5, 0.5)

(1.0, 1.0)

0 1 2 3 4

1

2

3

0
(5.5, 1.5)

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008 14

Two CUDA Texture Types

  Bound to linear memory

  Global memory address is bound to a texture

  Only 1D

  Integer addressing

  No filtering, no addressing modes

  Bound to CUDA arrays

  CUDA array is bound to a texture

  1D, 2D, or 3D

  Float addressing (size-based or normalized)

  Filtering

  Addressing modes (clamping, repeat)

  Both

  Return either element type or normalized float

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008 15

CUDA Texturing Steps

  Host (CPU) code

  Allocate/obtain memory (global linear, or CUDA array)

  Create a texture reference object

  Currently must be at file-scope

  Bind the texture reference to memory/array

  When done:

  Unbind the texture reference, free resources

  Device (kernel) code

  Fetch using texture reference

  Linear memory textures

  tex1Dfetch()

  Array textures

  tex1D() or tex2D() or tex3D()

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008 16

Global memory optimization

  Coalescing greatly improves throughput

  Prefer Structures of Arrays over AoS

  If SoA is not viable, read/write through shared memory

  Try textures for uncoalescible read patterns

  Batching can help performance

  A thread reads/writes multiple elements

  Increases overlap opportunities

  Strive for 50% or higher occupancy

  Occupancy is number of threads running concurrently

divided by maximum number of threads that can run

concurrently

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008 17

Occupancy and Register Pressure

  Latency is hidden by using many threads per
multiprocessor

  Factors limiting the number of concurrent threads

  Number of registers

   8192 or 16384 per multiprocessor, partitioned among concurrent threads

  Amount of shared memory

   16KB per multiprocessor, partitioned among concurrent thread blocks

  Compile with --ptxas-options=-v flag

  Use --maxrregcount=N flag to NVCC

  N = desired maximum registers / thread

  At some point “spilling” into local memory will occur

   Reduces performance – local memory is slow (physically in DRAM)

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008 18

Shared Memory

  Orders of magnitude faster than global memory

  Uses

  Inter-thread communication within a block

  Use it to avoid non-coalesced access

  See “Matrix Transpose” SDK example

  Organization

  16 banks

  Bank width: 32 bits

  Successive 32-bit words belong to different banks

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008 19

Shared memory bank conflicts

   No bank conflicts

   all threads in a half-warp access different banks

   all threads in a half-warp read the same address

   Bank conflicts

  Multiple threads in a half-warp access the same bank

   Access is serialized

   Detecting

  warp_serialize profiler signal

  bank checker macro in the SDK

  Performance impact

  Shared memory intensive apps: up to 30%

  Little to no impact if performance limited by global

memory

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008 20

Bank Addressing Examples

   No Bank Conflicts

   Linear addressing

stride == 1

   No Bank Conflicts

   Random 1:1 Permutation

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008 21

Bank Addressing Examples

   2-way Bank Conflicts

   Linear addressing

stride == 2

   8-way Bank Conflicts

   Linear addressing

stride == 8

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2

Bank 1
Bank 0

x8

x8

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008 22

Assessing Memory Performance

  Global memory

  how close to the maximum bandwidth?

  Textures

  throughput alone can be tricky

  some codes exceed theoretical bus bandwidth (due to

cache)

  how close to the theoretical fetch rate?

  G80: ~18 billion fetches per second

  Shared memory

  check for bank conflicts -> profiler, bank-macros

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008 23

Runtime Math Library and Intrinsics

  Two types of runtime math library operations

  __func(): direct mapping to hardware ISA

  Fast but lower accuracy (see prog. guide for details)

  Examples: __sin(x), __exp(x), __pow(x, y)

  func(): compile to multiple instructions

  Slower but higher accuracy (5 ulp or less)

  Examples: sin(x), exp(x), pow(x, y)

  A number of additional intrinsics

  __sincos(), __rcp(), ...

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008 24

Control Flow

  Divergent branches

  Threads within a single warp take different paths

  if-else, ...

  Different execution paths are serialized

  Divergence avoided when branch condition is a

function of thread ID

  Example with divergence

  if (threadIdx.x > 2) {...} else {...}

  Branch granularity < warp size

  Example without divergence

  if (threadIdx.x / WARP_SIZE > 2) {...} else {...}

  Branch granularity is a whole multiple of warp size

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008 25

Grid Size Heuristics

  # of blocks > # of multiprocessors

  All multiprocessors execute at least one block

  # of blocks / # of multiprocessors > 2

  Multiple blocks can run concurrently on a multiprocessor

  Blocks that aren’t waiting at a __syncthreads() keep the

hardware busy

  # of blocks > 100 to scale to future devices

  1000s blocks per grid will scale across multiple

generations

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008 26

Optimizing threads per block

  Thread block size should be a multiple of warp size

  Avoid wasting computation and on chip resources on

under-populated warps

  Heuristics

  Minimum: 64 threads per block

  Only if multiple concurrent blocks

  128, 192, or 256 threads a better choice

  Usually still enough registers to compile and invoke successfully

  This all depends on your computation, so experiment!

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008 27

Page-Locked System Memory

  Enables highest cudaMemcpy performance

  3.2 GB/s on PCI-e x16 Gen1

  5.2 GB/s on PCI-e x16 Gen2

  cudaMallocHost() / cudaFreeHost() calls

  See the “bandwidthTest” CUDA SDK sample

  Use with caution

  reduces RAM available to the virtual memory system

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008 28

Asynchronous memory copy

  Asynchronous host  device memory copy for

pinned memory (allocated with cudaMallocHost in

C) frees up CPU on all CUDA capable devices

  Overlap implemented by using a stream

  Stream = Sequence of operations that execute in

order

  Stream API

  0 = default stream

  cudaMemcpyAsync(dst, src, size, direction, 0);

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008 29

Kernel and memory copy overlap

  Concurrent execution of a kernel and a host 

device memory copy for pinned memory

  Devices with compute capability >= 1.1 (G84 and up)

  Overlaps kernel execution in one stream with a memory

copy from another stream

  Stream API

overlapped

cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);
cudaMemcpyAsync(dst, src, size, dir, stream1);
kernel<<<grid, block, 0, stream2>>>(…);
cudaStreamQuery(stream2);

