-

CUDA Performance Optimization

Patrick Legresley

Optimizations <X
NVIDIA.

® Kernel optimizations
® Maximizing global memory throughput
® Efficient use of shared memory
® Minimizing divergent warps
® |ntrinsic instructions

® Optimizations of CPU/GPU interaction

® Maximizing PCle throughput
® Asynchronous memory copies

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008

<X

»/
S —

NVIDIA.

Coalescing global memory accesses

® A coordinated load/store by a half-warp (16 threads)

®A contiguous region of global memory
® 64 bytes - each thread accesses a 32-bit word: int, float, ...
® 128 bytes - each thread accesses a double-word: int2, float2, ...
® 756 bytes - each thread accesses a quad-word: int4, float4, ...

® Additional restrictions
® Starting address for a region must be a multiple of region size

® The kth thread in a half-warp must access the k" element in a
o] [oTe] ¢

® Exception: not all threads must be participating
® predicated access, divergence within a half-warp

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008

o

NVIDIA.

Coalesced Access: floats

t14 t15

‘oo

128 132 136 140 144 184 188 192

All threads participate

t14 t15

‘oo

184 188 192

Some threads do not participate

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008

Uncoalesced Access: floats S,%A

tf t1><tz tf t14 t15

128 132 136 140 144 184 188 192

Permuted access by threads

t13 t14 t15

N NN

128 132 136 140 144 184 188 192

Misaligned starting address (not a multiple of 64)

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008

Coalesced Access: float3 <X
NVIDIA.

® Use shared memory to allow coalescing

® Threads read a block of floats into shared memory in a
coalesced way

® Need sizeof(float3) * (threads per block) bytes of shared
memory

® Processing

® Each thread retrieves its float3 from shared memory
® Rest of the compute code does not change

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008

<X

»/

NVIDIA.

Coalescing: Timing Results

® Experiment

® Kernel: read a float, increment, write back
® 3M floats (12MB)
® Times averaged over 10K runs

® 12K blocks x 256 threads reading floats
®
®

356us — coalesced
357us — coalesced, some threads don’t participate
® 3,494us — permuted/misaligned thread access

® 4K blocks x 256 threads reading float3s

® 3,302us - float3 uncoalesced
® 359us — float3 coalesced through shared memory

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008

<X

»/
S —

NVIDIA.

Coalescing:
Structures of size # 4, 8, or 16 bytes

® Use a Structure of Arrays (SoA) instead of Array of Structures (AoS)

® If SoA is not viable
® Force structure alignment: align(X), where X =4, 8, or 16
® Use shared memory to achieve coalescing

Point structure

y y y

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008

Coalescing (Compute 1.2+ GPUs) <X

NVIDIA.

® Much improved coalescing capabilities in 10-series
architecture

® Hardware combines addresses within a half-warp into
one or more aligned segments
® 32, 64, or 128 bytes

® All threads with addresses within a segment are
serviced with a single memory transaction
® Regardless of ordering or alignment within the segment

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008

Compute 1.2+ Coalesced Access:
Reading floats

tf t1><tZ tf t14 t15

128 132 136 140 144 184 188 192

Permuted access by threads

t13 t14 t15

N NN

128 132 136 140 144 184 188 192

Misaligned starting address (not a multiple of 64)

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008

Compute 1.2+ Coalesced Access:
Reading floats

32-byte segment 64-byte segment

t13 t14 t15

/w/”/”f/”' NIV

116 120 124 128 132 168 172 176

Misaligned starting address (not a multiple of 64)

Transaction size recursively reduced to minimize size

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008

Textures in CUDA

® Texture is an object for reading data

® Benefits

® Datais cached (optimized for 2D locality)
® Helpful when coalescing is a problem
® Filtering
® Linear / bilinear / trilinear
® dedicated hardware
® Wrap modes (for “out-of-bounds” addresses)
® Clamp to edge / repeat
® Addressable in 1D, 2D, or 3D
® Using integer or normalized coordinates

® Usage
® CPU code binds data to a texture object
® Kernel reads data by calling a fetch function

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008

.

NVIDIA.

o

Texture Addressing

0 1 2 3 4

<X

»/
S —

NVIDIA.

(2.5, 0.5)

Wrap

® Out-of-bounds coordinate is
wrapped (modulo arithmetic)

0 1 2 3 4

(5.5, 1.5)

© NVIDIA Corporation 2008

Clamp

® Out-of-bounds coordinate is
replaced with the closest
boundary

0 1 2 3 4

(5.5, 1.5)

CUDA Tutorial Hot Chips 20 Aug. 24, 2008

Two CUDA Texture Types <3

NVIDIA.

® Bound to linear memory
® Giobal memory address is bound to a texture
® only1D
® Integer addressing
® No filtering, no addressing modes

® Bound to CUDA arrays
® cupa array is bound to a texture
® 1D,2D,0r 3D
® Float addressing (size-based or normalized)
® Filtering
® Addressing modes (clamping, repeat)

® Both
® Return either element type or normalized float

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008

CUDA Texturing Steps <X

NVIDIA.

® Host (CPU) code

® Allocate/obtain memory (global linear, or CUDA array)
® Create a texture reference object
® Currently must be at file-scope

® Bind the texture reference to memory/array
® When done:

® Unbind the texture reference, free resources

® Device (kernel) code

® Fetch using texture reference

® Linear memory textures
® icxiDfetch()

® Array textures
® . cx1D() or tex2D () or tex3D ()

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008

<X

»/
S —

Global memory optimization v

® Coalescing greatly improves throughput
® Pprefer Structures of Arrays over AoS

® 1fSoA is not viable, read/write through shared memory
® Try textures for uncoalescible read patterns

® Batching can help performance
® A thread reads/writes multiple elements
® Increases overlap opportunities

® Strive for 50% or higher occupancy

® Occupancy is number of threads running concurrently
divided by maximum number of threads that can run
concurrently

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008

<X

»/

NVIDIA.

Occupancy and Register Pressure

® Latency is hidden by using many threads per
multiprocessor

® Factors limiting the number of concurrent threads

® Number of registers
® 3192 or 16384 per multiprocessor, partitioned among concurrent threads

® Amount of shared memory
® 16KB per multiprocessor, partitioned among concurrent thread blocks

® Compile with --ptxas-options=-v flag

® Use --maxrregcount=N flag to NVCC
® N =desired maximum registers / thread

® Atsome point “spilling” into local memory will occur
® Reduces performance — local memory is slow (physically in DRAM)

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008

Shared Memory <X

NVIDIA.

® Orders of magnitude faster than global memory

® Uses

® |nter-thread communication within a block

® Use it to avoid non-coalesced access
® See “Matrix Transpose” SDK example

® Organization
® 16 banks
® Bank width: 32 bits
® Successive 32-bit words belong to different banks

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008

Shared memory bank conflicts

® No bank conflicts
® allthreads in a half-warp access different banks
® allthreadsina half-warp read the same address

® Bank conflicts
® Multiple threads in a half-warp access the same bank
® Access is serialized
® Detecting
® warp_serialize profiler signal
® bank checker macro in the SDK

® performance impact
® Shared memory intensive apps: up to 30%

® Little to no impact if performance limited by global
memory

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008

Bank Addressing Examples

=

NVIDIA.

® No Bank Conflicts

® Linear addressing
stride ==

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

® No Bank Conflicts

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 15

® Random 1:1 Permutation

© NVIDIA Corporation 2008

CUDA Tutorial Hot Chips 20 Aug. 24, 2008

Bank Addressing Examples

<3

NVIDIA.

® 2-way Bank Conflicts

® Linear addressing
stride ==

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4

Thread 8
Thread 9
Thread 10
Thread 11

® 8-way Bank Conflicts

® Linear addressing
stride ==

Thread O
Thread 1

Thread 2
Thread 3 ’
Thread 4 '\
Thread 5 \
Thread 6
Thread 7

x8

Thread 15

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008

Assessing Memory Performance

® Giobal memory
® how close to the maximum bandwidth?

® Textures

® throughput alone can be tricky

® some codes exceed theoretical bus bandwidth (due to
cache)

® how close to the theoretical fetch rate?
® G80: ~18 billion fetches per second

® Shared memory

® check for bank conflicts -> profiler, bank-macros

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008

<X

»/

NVIDIA.

Runtime Math Library and Intrinsics

® Two types of runtime math library operations
® __func(): direct mapping to hardware ISA

® Fast but lower accuracy (see prog. guide for details)
® Examples: sin(x), exp(x), pow(x, y)
® func(): compile to multiple instructions

® Siower but higher accuracy (5 ulp or less)
® Examples: sin(x), exp(x), pow(x, y)

® A number of additional intrinsics

® __sincos(), _ rcp(),

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008

<X

»/
S —

NVIDIA.

Control Flow

® Divergent branches
® Threads within a single warp take different paths
® if-else, ...
® Different execution paths are serialized

® Divergence avoided when branch condition is a

function of thread ID

¢ Example with divergence
® if (threadIdx.x > 2) {...} else {...}
® Branch granularity < warp size

® Example without divergence

® if (threadIdx.x / WARP SIZE > 2) {...} else {...}
® Branch granularity is a whole multiple of warp size

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008

<X

»/
S —

NVIDIA.

Grid Size Heuristics

® 4 of blocks > # of multiprocessors
® Al multiprocessors execute at least one block

® 4 of blocks / # of multiprocessors > 2
® Multiple blocks can run concurrently on a multiprocessor

® Blocks that aren’t waiting ata syncthreads () keep the
hardware busy

® 4 of blocks > 100 to scale to future devices

® 1000s blocks per grid will scale across multiple
generations

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008

<X

Optimizing threads per block

® Thread block size should be a multiple of warp size

® Avoid wasting computation and on chip resources on
under-populated warps

® Heuristics
® Minimum: 64 threads per block

® Only if multiple concurrent blocks

® 128, 192, or 256 threads a better choice

® Usually still enough registers to compile and invoke successfully
® This all depends on your computation, so experiment!

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008

<X

»/
S —

NVIDIA.

Page-Locked System Memory

® Enables highest cudaMemcpy performance
® 3.2 GBI/s on PCl-e x16 Gen1
® 5.2 GB/s on PCl-e x16 Gen2

® cudaMallocHost() / cudaFreeHost() calls
® See the “bandwidthTest” CUDA SDK sample

® Use with caution
® reduces RAM available to the virtual memory system

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008

o

NVIDIA.

Asynchronous memory copy

® Asynchronous host <> device memory copy for
pinned memory (allocated with cudaMallocHost In
C) frees up CPU on all CUDA capable devices

® Overlap implemented by using a stream

® Stream = Sequence of operations that execute in
order

® Stream API

® (= default stream

® cudaMemcpyAsync (dst, src, size, direction, 0);

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008

<X

Kernel and memory copy overlap

® Concurrent execution of a kernel and a host <>
device memory copy for pinned memory
® Devices with compute capability >= 1.1 (G84 and up)

® Overlaps kernel execution in one stream with a memory
copy from another stream

® Stream API

cudaStreamCreate (&streaml) ;

cudaStreamCreate (&stream?) ;

cudaMemcpyAéync(dst, src, size, dir, streaml); overlapped
kernel<<<grid, block, 0, stream2>>>(..);

cudaStreamQuery (stream?) ;

© NVIDIA Corporation 2008 CUDA Tutorial Hot Chips 20 Aug. 24, 2008

