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WLAN Standards Evolution

� FHSS and DSSS

� 1, 2 Mbps DSSS

� ~11 MHz bandwidth

� 2.4-2.5 GHz

802.11

(1997)

� DSSS and CCK

� 1, 2 Mbps DSSS

� 5.5, 11 Mbps CCK

� ~11 MHz bandwidth

� 2.4-2.5 GHz

802.11b

(1999)

� OFDM

� 6, 9, 12, 18, 24, 36, 48, 54 Mbps

� ~17 MHz bandwidth

� (4.92-5.1) 5.15-5.825 GHz

802.11a

(1999)

� DSSS, CCK and OFDM

� 1 – 54 Mbps

� ~11 or ~17 MHz bandwidth

� 2.4-2.5 GHz

802.11g

(2003)=+

� DSSS, CCK, OFDM, and MIMO-OFDM

� 1 – 600 Mbps (77 new modulation and coding sets)

� Up to 1.1x rate through higher max code rate

� Up to 4x through use of multiple antennas

� ~11, ~17 or ~35 MHz bandwidth

� Up to 2.5x rate through bandwidth expansion

� 2.4-2.5, (4.92-5.1) 5.15-5.825 GHz

� Flexible transmitter and receiver PHY components

� MAC-layer aggregation

802.11n

(2008?)

� Transition from low (~0.1
bps/Hz) to high spectral
efficiency (> 15 bps/Hz) in less
than 10 years!

– The complexity in number of possible
PHY rates and modes is vastly greater
than it was at the end of the last century.
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Worldwide WLAN Volume by Standard

WiFi Shipments by Protocol Worldwide
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 802.11n will dominate the market going forward (after a slow start)  
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Multipath Channels:  Non-LOS

� Multipath:

– Is caused by the multiple arrivals of the transmitted signal to the receiver due to

reflections off “scatterers” (walls, cabinets, people, etc.).

– For most indoor wireless systems, it is generally more problematic if a direct line-

of-sight (LOS) path does not exist between the transmitter and the receiver

– If incident waves are uniformly distributed over solid angle, the fade depth at any

location is drawn from a Rayleigh distribution.  Many real indoor environments

approximate Rayleigh fading.

Access Point

Client

Fig. after ref [1]
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Multipath Channels:  Spatial Selectivity

� Received signal power as a function of receiver-to-transmitter distance

for a multi-GHz transmission in a multi-path indoor environment is

shown below

– Received signal power can vary quite significantly with a slight change in distance

� What can we do to mitigate the effects of spatial selectivity?

Fig. after ref [2]
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Maximal Ratio Combining (MRC)
� One can select “best” antenna(s) or combine antenna outputs.

� In OFDM, MRC may be performed on a per subcarrier (m=1..num_subcarriers)

basis to help reduce multipath deep nulls.

� The combiner weights from each branch are adjusted independently from other

branches according to its branch SNR:

Now, can we exploit multipath propagation to increase data rates?

Fig. after ref [3]
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Exploiting Multipath for Higher Rates:
 Constant-energy Capacity Increase

Each circle represents a location on one floor of an office building with offices, cubicals

and labs.  Notice the roughly linear increase in capacity.

The ratio of the first to second singular value decreases as M and N increase  There is

always a benefit to using more antennas for k <= min(M,N) spatial streams, though the

benefit diminishes.
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MIMO-OFDM

� In OFDM, the
channel is broken
into L (in this case,
53) parallel flat-
fading channels,
each represented by
a single  complex
coefficient.

� In MIMO OFDM,
there is an NxM
complex-valued
matrix of channel
coefficients per
subcarrier, where M
is the number of
transmitter antennas
and N is the number
of receiver
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Space Division Multiplexing (SDM)

� One can transmit an
independent data
stream on each
transmit antenna
provided the receiver
has at least two
antennas.

� In this 2x2 SDM case,
the data may be
recovered perfectly on
any subcarrier if its 2x2
channel matrix is
invertible (2 equations,
2 unknowns) and SNR
is high enough.

� The simplest linear
receiver inverts the
channel matrix to
recover transmitted
symbols and is
referred to as “Zero-
Forcing”.
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2x2 SDM In the Context of an OFDM

Transmitter/Receiver

� Space Division Multiplexing (SDM) up

to 130 Mbps in 20 MHz bandwidth or

270 Mbps in 40 MHz bandwidth (64-

QAM, 5/6 rate)

� Use 400ns cyclic advance on Short

Training and 400ns cyclic advance on

Long Training, SIGNAL fields and

DATA.

� Long Training using time

orthogonality between HT-LTF #s 1

and 2; channel estimation in

frequency domain reusing 11a/g

blocks

between HT-LTF #1 and #2

L-STF L-LTF L-SIG HT-SIG HT-DATA …

c400 c400 c400 c400 c400 c400 c400

(+1)

(+1)

(+1)

(+1)

Legacy compatible preamble

c400 c400

(+1)

(-1)

HT-STF HT-LTFHT-LTF

“Mixed Mode” High Throughput (HT) Frame Format
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Receiver Types for SDM

� Zero Forcing (ZF)

– Simplest receiver type (covered in intro to SDM)

– Poor performance on channels with high condition number and at low SNR

� Nrx > Nss in general for decent performance

� MMSE-LE

– Incorporates knowledge of input SNR

– Far higher complexity than ZF but better performance at low SNR

– Poor performance on channels with high condition number

� Nrx > Nss in general for decent performance

� Interference-cancelling

– Suffers large losses from error propagation with one FEC encoder

� Generally a poor choice for 802.11n

� ML Detector

– Best performance achievable open-loop while also meeting rx-tx timing requirement

– High complexity
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ML Detector and Complexity

� 2x2 MIMO system using M2-QAM modulation

� Brute force MLD

– Log-likelihood ratio for bit k is

– Must compute                for each M4 possible combination of QAM symbols

– Requires 20M4 multiplies and 12M4 adds per subcarrier per 4D symbol

– Provides receiver diversity order 2 with two antenna outputs

� Complexity of efficient approach (per subcarrier per 4D symbol):

– M2/8 + M/4 + 73 multiplies, [18 + 4log2(M)]M2+78 adds

– Also need 4log2M low-precision divisions for global scaling of each LLR by 1/K 2

– Comparisons for 64-QAM (M=8)

� Brute force ML -- 81920 multiplies and 49152 adds plus overhead

� Efficient ML -- 83 multiplies, 1998 adds including overhead
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2x2 ML Performance – Channel D NLOS
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2x2 Performance Summary

50 channels, 10 pkts per channel, 10,000 data bits per packet.

CG0

D

B

1. ZF-LE to MMSE-LE gap is more pronounced at lower SNR (smaller constellations

at fixed error rate).

2. MMSE-LE/ZF-LE to ML gap is more pronounced on channels with higher condition

number (more correlated paths) and at higher code rates (weaker code due to

puncturing).  I.e., ML helps on poor channels at the highest data rates.
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802.11n Radio Design Challenges and
Baseband Solutions

� Receiver dynamic range

– Must deal with desired signals from roughly +5 to almost -100 dBm at the LNA input

– Must deal with blockers with carrier frequency offset as little as 25 MHz away and
power as much as 35 dB greater than desired signal

– Requires high-dynamic-range AGC and sensitive carrier detector.

� Transmit error vector magnitude (EVM)

– Must meet tight EVM requirements for highest OFDM rate (< -28 dB)

� Requires minimizing phase noise and I-Q imbalance (nonlinear impairments)

� Requires tight control of output power to avoid PA saturation region

� Additional challenges for compact direct-conversion receivers

– Receiver DC offset

– Local oscillator (LO) feedthrough at transmitter

– I-Q imbalance

16

Po=-5dBm; EVM= -40dB @ 5.24GHz

Po=-2dBm; -41dB @ 2.484GHzFrf = 5.24GHz

Post-calibration Phase Noise and EVM

Results

Figs. after ref [4]
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The Need for a Flexible Transceiver
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Standards uncertainty and a

large number of mode,

preamble, and frequency map

combinations mandated a

flexible implementation.
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Cyclic delay
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Fig. after ref [5]
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An Example:  Programmable TX Engine
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MAC Improvements:  Why Aggregate
Frames?

� RTS/CTS/A-MPDU/IBA vs. DATA/ACK improvement

– At a 300 Mbps PHY rate, 60 Mbps throughput is the upper bound for a UDP-like flow with an

unmodified DCF MAC.

– Throughput is around 180 Mbps (or better) with A-MPDU and Immediate BA

MAC Efficiency 802.11a - 1500 Byte frames
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A-MPDU Aggregation
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� Control and data MPDUs (MAC Protocol Data Units) can be
aggregated

� PHY has no knowledge of MPDU boundaries
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Baseband Block Diagram (Showing Radio
Interconnections)

� Supported interfaces:  JTAG (both for test and radio control), GPIOS, OTP interface, PCI/Cardbus, PCI-

Express

� Maximum supported PHY rate:  270 Mbps (includes proprietary 256-QAM mode for test)

� Full hardware support for TKIP, AES and WEP

� Support for non-simultaneous activity in multiple bands (2.4-2.5 and 4.92-5.925 GHz)
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TCP Throughput and Range

� Close-range (10-ft.) over the air

test at 5.24 GHz

� 2x2 system

� Max TCP throughput: 198

Mbps

� Average throughput > 193

Mbps

Figs. after ref [4]
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3x3 with Selection Diversity
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Baseband Die Plot and Summary

� Configurable static and dynamic power down
modes (per RF path)

� Power consumption:

– Driver down, PCI-E clkreq + ASPM:  29 mA from 3.3V
supply*

– Driver up, associated, either PM1 or PM2, PCI-E clkreq +
ASPM:  37 mA from 3.3V supply*

– Driver up, associated, PM0, PCI-E clkreq + ASPM:  470
mA from 3.3V supply*

– Driver up, associated, full-rate 270 Mbps data, PM0:  820
mA from 3.3V supply*

� Sensitivity limits:  -69 dBm at 270 Mbps (40 MHz
bandwidth)

� Max. TCP throughput:  200 Mbps

� Operational temperature range:  0 to 75 deg C

� 3-16 dB (typ: 4-6 dB) gain over PER range of
interest through ML detection, with additional
gain possible through antenna selection

� 130 nm CMOS, 57.1 mm2

� Packages:

– 256-ball FBGA (PCI)

– 282-ball FBGA (PCI-E)

* Including radio current (radio is ~193 mA off 3.3V supply when active).



25

Acknowledgments

With many thanks to the following individuals who have

contributed to the slides and/or reviewed the material:

Dr. Ed Frank

Dr. Nambi Seshadri

26

References

[1] A. Behzad, “The Implementation of a High Speed Experimental Transceiver Module with an
Emphasis on CDMA Applications”, Electronic Research Labs, U.C. Berkeley, 1994.

[2] T. S. Rappaport.  Wireless Communications – Principles and Practice, IEEE Press, 1996.

[3] W.-J. Choi, et. al., “MIMO Technology for Advanced Wireless Local Area Networks”, DAC,
June 2005.

[4] A. Behzad, et. al., “A Fully Integrated Multiband Direct Conversion CMOS Transceiver for
MIMO WLAN Applications (802.11n)”, ISSCC 2006.

[5] IEEE 802.11n Draft 2.0, 2006.

[6] A. Behzad, “WLAN Radio Design”, ISSCC Tutorial, 2004.

[7] D. Browne, “Experiments with an 802.11n Radio Testbed”, UCLA/802.11n committee, July
2005.

[8] T. H. Lee, The Design of CMOS RF ICs, Cambridge University Press, Jan. 1998.

[9] D. Tse, et. al. Fundamentals of Wireless Communications, Cambridge University Press, 2005.

[10] J. Medbo and P. Schramm, “Channel models for HIPERLAN/2,” ETSI/BRAN document no.
3ERI085B.

[11] A.A.M. Saleh and R.A. Valenzuela, “A statistical model for indoor multipath propagation,”
IEEE JSAC, vol. 5, 1987, pp. 128-137.

[12] V. Erceg, et. al., “Indoor MIMO WLAN Channel Models”, IEEE 802.11-03/161r0a, March 2003.

[13] V. Tarokh, et. al., “Space-Time Codes for High Data Rate Wireless Communications:
Performance Criterion and Code Construction”, IEEE Trans. Info. Theory, vol. 44, 1998, pp.
744-765.



27

Thank you


