



A 4 Gbps Wireless True Uncompressed 1080p-Capable HD A/V Transceiver Using 60 GHz

HOT CHIPS 2007

Jeffrey M. Gilbert, Chinh H. Doan, Sohrab Emami, C. Bernard Shung

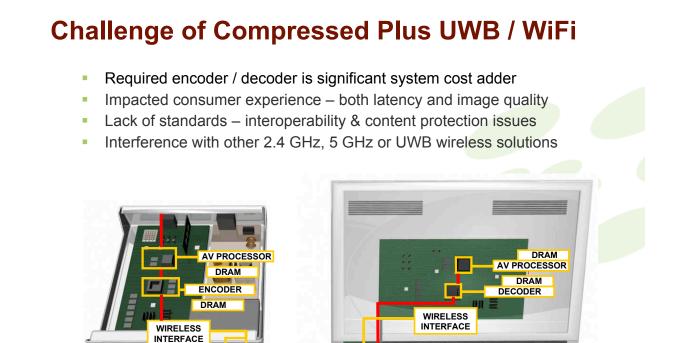
Copyright 2007 SiBEAM, Inc.

SiBEAM Inc.



Imagine the full quality of a wired A/V connection for uncompressed high definition 1080p, coupled with the ease of use, ease of placement, and unified control capabilities of a fully interconnected wireless system.

This presentation will introduce the world's first chipset capable of achieving this using 60 GHz wireless transmissions.



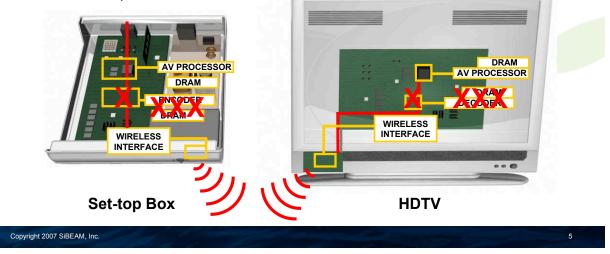

SEBEAM

### Agenda

- Benefits of Uncompressed High Definition Wireless A/V
- WirelessHD Overview
- Obtaining Very High Wireless Data Rates
- Challenges and Solutions for 60 GHz Operation
- Wireless Video Area Network Design
- SiBEAM's Uncompressed 60 GHz Wireless High Definition Chipset
- Conclusion

Copyright 2007 SiBEAM, Inc




**Set-top Box** 

HDTV



### The Uncompressed Value Proposition

- Lower cost solution w/o video encoder & decoder
- Preserves best image and audio quality
- Avoids encoding generated latency
- No interference with 2.4 GHz, 5 GHz, and UWB wireless solutions
- Available WirelessHD specification for interoperability and content protection



SEBEAM

### **Enabling Wireless Video Area Networks**





# Achieving Interoperability via the WirelessHD<sup>™</sup> Consortium

Started in early 2005, seven market leaders and industry experts have joined together to create a special interest group, the WirelessHD™ Consortium, to develop an interoperable wireless specification for a wireless high-definition digital interface to enable a wireless video area network (WVAN) for high-definition baseband audio / video (A/V) streaming and high-speed media transmission for consumer electronics (CE) devices.



Copyright 2007 SiBEAM, Inc

#### SeBEAM

### **WirelessHD Key Characteristics**

- Interoperability supported by major CE device manufacturers
- High-speed wireless, multi-gigabit communications technology in the unlicensed 60 GHz band
- Uncompressed HD video, audio and data transmission, scaleable to future high-definition A/V formats
- Smart antenna technology for reliable, non line of sight (NLOS), high-quality consumer experience
- Device control for simple operation of consumer electronics products and network
- Secure Communications
- Quality of Service (QoS) for A/V applications



### **Architecting a Multi-Gbps PHY**

- Highest quality, low-latency HD content requires very high data rates
  - Uncompressed 1080p content requires raw data rates of about 4 Gbps at very low bit error rates
- This requires very high spectral efficiency or large amount of spectrum
  - Raw data rate = Spectral Efficiency (bps/Hz) \* Bandwidth (Hz)
  - Higher spectral efficiency leads to higher cost, less range and robustness
    - High spectral efficiency requires strong signals and complex processing
- Large amount of spectrum requires operation in a large (unlicensed) band
  - Multi-GHz unlicensed spectrum with reasonable Tx power available world-wide at 60 GHz
  - A better overall solution!

Copyright 2007 SiBEAM, Inc.



## 60 GHz Advantage for High Data Rates

|            | Total<br>Spectral<br>Availability | Max Permitted<br>Transmit Power<br>(EIRP) | Max Data Rate | Bps / Hz<br>Required to<br>get to 4 Gbps<br>(11a/g = 2.7) | World-Wide<br>Availability |
|------------|-----------------------------------|-------------------------------------------|---------------|-----------------------------------------------------------|----------------------------|
| WirelessHD | 7.00 GHz                          | 8,000 mW<br>(39 dBm)                      | ~4,000 Mbps   | 1.6 bps/Hz<br>w/ 2.5 GHz channel                          | Y                          |
| 802.11n    | 0.67 GHz                          | 160-3200 mW<br>(22-35 dBm)                | 600 Mbps      | 100.0 bps/Hz<br>w/ 40 MHz channel                         | Y                          |
| UWB        | 1.5 GHz –<br>7.5 GHz*             | 0.1 mW<br>(-10 dBm)                       | 480 Mbps      | 8.0 bps/Hz<br>w/ 520 MHz<br>channel                       | N                          |

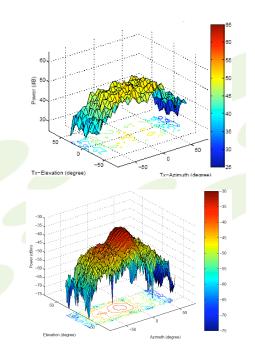
60 GHz makes cost-effective multi-gigabit data rates possible!



#### **Challenges & Solutions for 60 GHz Operation**

- 60 GHz operation requires focused (directional) beams for high data rates at even moderate range
  - Result of Friis' equation, high carrier frequency, and required signal strength for high data rates:

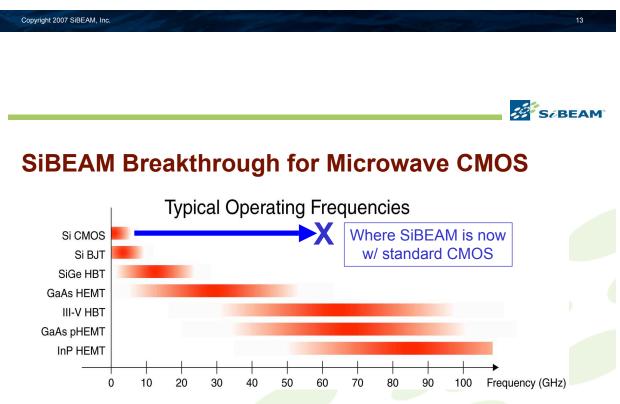
$$Power_{Rx} = \frac{Power_{Tx} \bullet Gain_{Tx} \bullet Gain_{Rx} \bullet c^{2}}{(4\pi \bullet Distance \bullet Frequency)^{2}}$$


- Fixed "horn" antennas typically unacceptable due to required manual alignment and line-of-sight operation
- Dynamic "smart antennas" which electronically move a focused directional beam provide solution
  - An array of antennas are used to form an agile focused beam
  - Similar technology as radar automatic operation "just works"
  - Key component of SiBEAM OmniLink60 technology

Copyright 2007 SiBEAM, Inc.



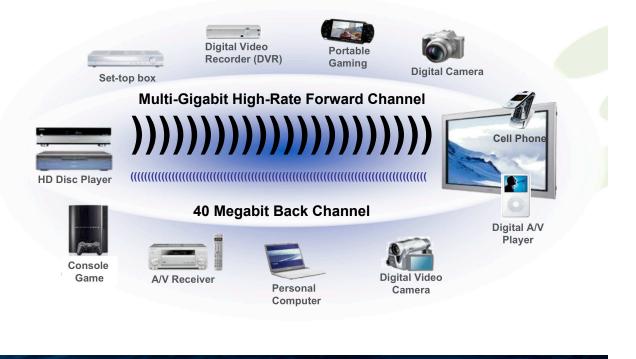
#### **Real-Time Beam Steering Operation**


- SiBEAM 60 GHz silicon, packaging, and real-time adaptive beam-forming algorithms enable non-line of sight streaming A/V
- Seamless dynamic adaptive beamsteering achieved – avoids obstacles while maintaining A/V stream
- Environment can be searched and optimal beam found in millisecond time scales
- Beam automatically adjusts if environment changes
- Omni-directional modes allow broadcast operation for device discovery and coordination





#### Designing Cost Effective Smart Antenna Systems


- Large number of antennas (10 to 100) needed for the required antenna array gain
- Antenna size scales inversely with carrier frequency, resulting in millimeter-scale antennas for 60 GHz
- SiBEAM has developed micro array antenna design techniques to leverage standard packaging processes to fabricate antenna arrays on the same package that houses the 60 GHz circuits
- Cost-effective solutions require cost-effective circuit implementation



- CMOS offers enormous cost reduction while providing higher integration and reliability
- Each new process generation moves the frequency 20–40% higher
- SiBEAM's approach allows full use of the capabilities of the technology



#### Wireless Video Area Network (WVAN) Topology



Copyright 2007 SiBEAM, Inc.



### **PHY Provides Omni and High Throughput**

Two types of Physical Layer (PHY) modes supported at ranges of 10+ meters:

- High-rate PHY (HRP):
  - Used for video and audio transmission
  - 1-4 Gb/s in beam-formed uni-directional mode
    - Supports uncompressed 1080p / 24 bit color @ 60 fps
    - Deep color capable enhancements
  - OFDM with QPSK and 16-QAM modulation
- Low-rate PHY (LRP):
  - Used for commands, beacon, broadcast and ACKs as well as audio
  - 2.5 10 Mb/s in omni-directional mode
  - 20 40 Mb/s in beam-formed uni-directional mode
  - OFDM with BPSK modulation



SCBEAM

### A MAC Architecture Optimized for Streaming High Definition Content

- Streaming low-latency, high-quality HD A/V requires careful MAC design
  - Some standards such as 802.11 / WiFi are more data-centric
- Time-Division Multiple Access (TDMA) scheduling promotes better QoS
- Central Coordinator schedules the traffic for the WVAN
  - One of the devices present (typically a display in the network) automatically becomes the Coordinator
  - All devices receive periodic beacons from the coordinator indicating schedule to allow them to precisely time transmits and receives
  - Coordinator also tracks WVAN members' entry and departure
- All communications are direct between devices (not via coordinator)
  - Results in greater network efficiency and relaxes coordinator requirements

Copyright 2007 SiBEAM, Inc

### **Wireless Video Area Network Security**

WVAN security is obtained on many levels:

- Proven strong encryption techniques
- Full digital content protection for Hollywood content
- Consumer content protection for user content and control
- Multi-Gbps uncompressed content to evade data capture
- 60 GHz & beam-formed communications for spatial containment
- Additional proximity controls



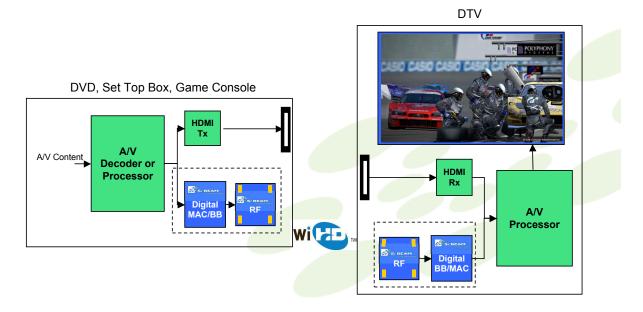
#### Demonstration

2-3 minute video clip demonstrating 60 GHz uncompressed 1080p WirelessHD prototyping system:



Copyright 2007 SiBEAM, Inc.



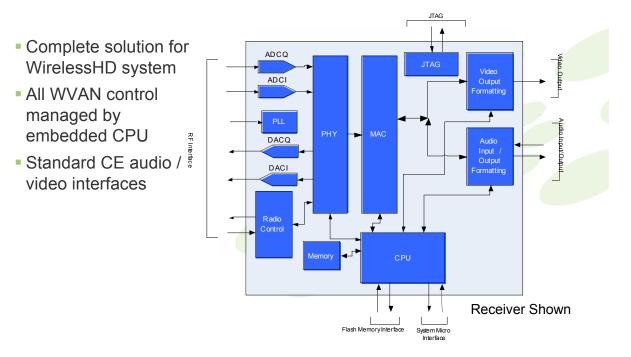

19

### **SOLUTIONS** Technology & Performance

- Multi-Gbps data rate for uncompressed audio/video/data content
  - Reliable connections (wired equivalent < 10<sup>-10</sup> BER)
- OmniLink60<sup>™</sup> technology for non-line-of-sight A/V applications in 60 GHz band
- 1080p, 60Hz video at 10m
  - Deep Color support at 720p/1080i
- High performance 8-channel, 192kHz audio
  - PCM and compressed data formats
- Hollywood approved secure content delivery
- Low cost, low component count, small form factor module
  - Standard CMOS logic process for low cost
  - Innovative package technology simplifies design
    - Completely integrated element micro antenna arrays

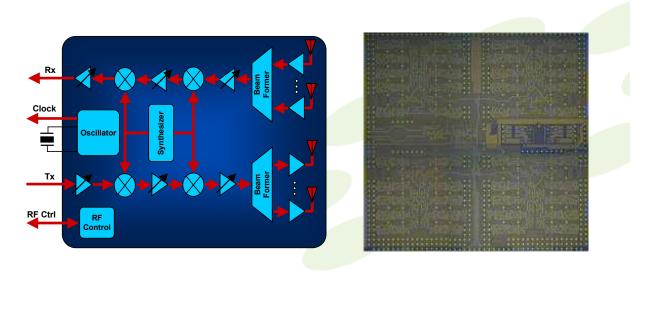


SéBEAM




#### **SOLUTIONS** Simplicity for Ease of Development

Copyright 2007 SiBEAM, Inc.




### **SOLUTIONS** Complete Receiver Integration





### **RF Chip Block Diagram and Die Photo**



#### Copyright 2007 SiBEAM, Inc

#### SéBEAM

23

### **Conclusions**

- Uncompressed high definition wireless A/V enables highest quality experience with reduced cost & complexity
- WirelessHD specification enables interoperability
- Very high wireless data rates possible through use of wide license-free 60 GHz band
- Robust non-line-of-sight (NLOS) operation possible through OmniLink60's<sup>™</sup> smart antenna technology
- Wireless video area network allows central control
- SiBEAM's uncompressed 60 GHz wireless high definition chipset delivers "antennas-to-bits" integration