CMOS is dead ... Long live CMOS!

Mike Mayberry Director, Components Research Intel

Past Era: "Simple" CMOS Scaling

Simple scaling

- Linear shrink (+raise yields)
- Thin gate oxide
- Junction engineering
- Reduce voltage
- Lasted about 10 years
- ~10x improvement in density
- $\sim 10x$ improvement in freq.
- >>10x improvement in performance

High Volume Manufacturing	1995	1997	1999	2001
(intro year)				
Technology Node	0.35	0.25	0.18	0.13
	um	um	um	um
Integration Capacity	10′s			1
. 4/10/07 Hot Chips	cMOS panel			Billion

D

Current Era: Materials + CMOS Scaling

Simple scaling

- Linear shrink (+ raise yields)
- Thin gate oxide
- Junction engineering
- Reduce voltage

Materials + scaling

- Complex shrink (+raise yields)
- High K/Metal gates
- Strain engineering
- Slowed voltage (+manage power)

	Still has life left !							
				I	n tel firs 1 st gen strain	st to in	mplement 1 st gen high K/MG	
High Volume Manufacturing (intro year)	1995	1997	1999	2001	2003	2005	2007	
Technology Node	0.35 um	0.25 um	0.18 um	0.13 um	90 nm	65 nm	45 nm	
Integration Capacity 4/10/07 Hot Chips	10's million			1 Billion			8 Billion	8,8 8,5 5, 6 ,8

Future Era: Devices + Materials + CMOS Scaling

Materials + scaling

- Complex shrink (+raise yields)
- High K/Metal gates
- Strain engineering
- Slowed voltage (+manage power)

Device + materials + scaling

- Complex shrink (+raise yields)
- High K/Metal gates
- Strain engineering
- Slowed voltage
- New devices to manage power

Expect ~10 further years ! -

					1 st gen strain	I	1 st gen nigh K/M(6	
High Volume Manufacturing	1995	1997	1999	2001	2003	2005	2007		~2017
(intro year)									
Technology Node	0.35 um	0.25 um	0.18 um	0.13 um	90 nm	65 nm	45 nm		below 10 nm
Integration Capacity 4 4/10/07 H	10's million ot Chips CMO	S panel		1 Billion			8 Billion		100's Billions

Still has life left !

- Less intrinsic variation
- Allows voltage reduction
- III-V quantum well devices
 - Much lower operating voltage
 - New ways to optimize devices
 - Many hard problems

5 4/10/07 Hot Chips CMOS panel

Summary

- Simple scaling was never simple
- The current era of materials + scaling still has life
- New CMOS devices demonstrated can take us near 2020
- Beyond that we can't tell but clever people are working on it today
- Moore's Law will continue
- No need to mourn the past, the future is still bright !