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Goals

Build Intel’s first Network-on-Chip (NoC)
research prototype

Show teraflops performance under 100W

Develop NoC design methodologies
– Tiled design

–Mesochronous (phase tolerant) clocking

– Fine grain power management

Prototype key NoC technologies
– On-die 2D mesh fabric

– 3D stacked memory
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Processor Architecture

Each tile:
5 GHz, 20 Gflops 
@ 1.2V

160 SP FP engines in 8x10 2D mesh
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Instruction Set

96-bit instruction word, up to 8 operations/cycle

FPU (2) SLEEPLOAD/STORE SND/RCV PGM FLOW

N/ASTALL/WAIT FOR DATA

1NAP/WAKE

1JUMP/BRANCH

2LOAD/STORE

2SEND/RECEIVE

9FPU

Latency (cycles)Instruction Type
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SP FP Processing Engine

Fast, single-cycle multiply-accumulate algorithm

Key optimizations

Ref: S. Vangal, et al. IEEE JSSC, Oct. 2006
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– Multiplier output is in carry-save format and

uses 4-2 carry-save adders, removing
expensive carry-propagate adders from the
critical path

– Accumulation is performed in base 32,
converting expensive variable shifters in the
accumulate loop to constant shifters

– Costly normalization step is moved outside
the accumulate loop

Accumulation in 15 Fanout-of-4 stages

Sustained 2FLOPS per cycle
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4 byte wide data links, 6 bits overhead

Source directed, wormhole routing

Two virtual lanes

5 port, fully non-blocking router

5GHz operation @1.2V

320GB/s bisection B/W

5 cycle fall-through latency

On/off flow control

2D Mesh Interconnect

High bandwidth, low latency fabric

RouterRouter

       Compute         Compute  

    Element    Element      

One tile
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Router Architecture

Buffer
Write

Buffer
Read

Route

Compute

Port/Lane

Arb

Switch

Traversal

Link

Traversal

Router Pipe stages

Five router pipe
stages

Input buffered

Shared crossbar
switch

Distributed dual
phase arbitration

Ref: S. Vangal, et
al., VLSI 2007
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Fabric Key Features

Double pumped crossbar switch
– Dual-edge triggered FFs on alternate data bits

– Crossbar channel width reduced by 50% leading
to 0.34mm2 router area

– Ref: S. Vangal, et al. VLSI, 2005

Mesochronous clocking
– Phase-tolerant FIFO based synchronizers at

interfaces between tiles

– Enables low power, scalable global clock
distribution

– 2W global clock distribution power @ 1.2V 5GHz

– Overhead of synchronizers: 6% of router power
and 1-2 clock cycles in latency
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Power Management Hooks

Extensive use of sleep transistors

Activation of sleep transistors done dynamically or
statically

Dynamic through special instructions or packets
based on workload

– NAP/WAKE: PE can put its FPMAC engines to sleep or wake
them up

– PESLEEP/PEWAKE: PE can put another PE to sleep or wake
it up for processing tasks by sending sleep or wake packets

Static through scan

– Entire PE or individual router ports
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Tile Sleep Regions
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Leakage Savings

2KB Data memory (DMEM)
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Router Power Management

Activity based power management

Individual port enables

– Queues on sleep and clock gated when port idle
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Application Kernels

Four kernels mapped on to architecture

– Stencil 2D heat diffusion equation

– SGEMM for 100x100 matrices

– Spreadsheet doing weighted sums

– 64 point 2D FFT (using 64 tiles)

Kernels were hand coded in assembly code
and manually optimized

Sized to fit in the on-chip local data memory

– Instruction memory not a limiter

20

20

Stencil SGEMM

2D FFTSpreadsheet

Communication Patterns

Communication overlapped with computation
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Application Performance
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Leakage Savings
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Design Tradeoffs

Core count
– Determined by die size constraints (300 sqmm) and

performance per watt requirements (10 GFLOPS/W)

Router link width
– 4 byte data path enables single flit transfer of single

precision word

– Crossbar area and power scales quadratically with link
width

Mesochronous implementation
– Single clock source with scalable, low power clock

distribution

Backend design and validation benefits
– Tiled methodology enabled rapid design by small team

(less than 400 person-months)

– Functional first silicon in 2 hours
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Die Photo and Chip Details
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Summary

An 80-Core NoC architecture in 65nm CMOS

– 160 high-performance FPMAC engines

– Fast, single-cycle accumulator

– Low latency, compact router design

– High bandwidth 2D mesh interconnect

TFLOPS level performance at high power efficiency

– Fine grain power management

– Chip dissipates 97W at 1TFLOPS (Stencil app)

– Measured energy efficiency of 6 to 22 GFLOPS/W

Demonstrated peak performance up to 2TFLOPS

Building blocks for future peta-scale computing
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