

Teraflops Prototype Processor with 80 Cores

Yatin Hoskote, Sriram Vangal, Saurabh Dighe, Nitin Borkar, Shekhar Borkar

Microprocessor Technology Labs, Intel Corp.

Agenda

- Goals
- Architecture overview
- Processing engine
- Interconnect fabric
- Power management
- Application mapping
- Experimental results

Goals

3

- Build Intel's first Network-on-Chip (NoC) research prototype
- Show teraflops performance under 100W
- Develop NoC design methodologies
 - Tiled design
 - Mesochronous (phase tolerant) clocking
 - Fine grain power management
- Prototype key NoC technologies
 - On-die 2D mesh fabric
 - 3D stacked memory

FPU (2)	LOAD/STORE	SND/RCV	PGM FLOW	SLEEP
---------	------------	---------	----------	-------

• 96-bit instruction word, up to 8 operations/cycle

Instruction Type	Latency (cycles)		
FPU	9		
LOAD/STORE	2		
SEND/RECEIVE	2		
JUMP/BRANCH	1		
STALL/WAIT FOR DATA	N/A		
NAP/WAKE	1		

5

SP FP Processing Engine

- Fast, single-cycle multiply-accumulate algorithm
- Key optimizations
 - Multiplier output is in carry-save format and uses 4-2 carry-save adders, removing expensive carry-propagate adders from the critical path
 - Accumulation is performed in base 32, converting expensive variable shifters in the accumulate loop to constant shifters
 - Costly normalization step is moved outside the accumulate loop
- Ref: S. Vangal, et al. IEEE JSSC, Oct. 2006

Accumulation in 15 Fanout-of-4 stages

Sustained 2FLOPS per cycle

32

Normalize

FPMAC

Agenda

- Goals
- Architecture overview
- Processing engine
- Interconnect fabric 🗲
- Power management
- Application mapping
- Experimental results

2D Mesh Interconnect

7

- 4 byte wide data links, 6 bits overhead
- Source directed, wormhole routing
- Two virtual lanes
- 5 port, fully non-blocking router
- 5GHz operation @1.2V
- 320GB/s bisection B/W
- 5 cycle fall-through latency
- On/off flow control

High bandwidth, low latency fabric

Compute

Element

Route

Router Architecture

- Five router pipe stages
- Input buffered
- Shared crossbar switch
- Distributed dual phase arbitration
- Ref: S. Vangal, et al., VLSI 2007

Buffer

Write

Buffer

Read

Router Pipe stages

9

- Double pumped crossbar switch
 - Dual-edge triggered FFs on alternate data bits

Fabric Key Features

- Crossbar channel width reduced by 50% leading to 0.34mm2 router area
- Ref: S. Vangal, et al. VLSI, 2005
- Mesochronous clocking
 - Phase-tolerant FIFO based synchronizers at interfaces between tiles
 - Enables low power, scalable global clock distribution
 - 2W global clock distribution power @ 1.2V 5GHz
 - Overhead of synchronizers: 6% of router power and 1-2 clock cycles in latency

11

- Goals
- Architecture overview
- Processing engine
- Interconnect fabric
- Power management 🗲
- Application mapping
- Experimental results

Power Management Hooks

- Extensive use of sleep transistors
- Activation of sleep transistors done dynamically or statically
- Dynamic through special instructions or packets based on workload
 - NAP/WAKE: PE can put its FPMAC engines to sleep or wake them up
 - PESLEEP/PEWAKE: PE can put another PE to sleep or wake it up for processing tasks by sending sleep or wake packets
- Static through scan
 - Entire PE or individual router ports

Tile Sleep Regions

ΓĻ

13

% of device width on sleep

57%

- 21 sleep regions with independent control
 - 74% of transistor device width
- Dynamic sleep
 - Individual FPMACs, cores or tiles
- Static sleep control
 - Scan chain
- Clock gating
 - Works with sleep

5, rol 90% 90% Processing Engine (PE)

Fine grain power management

Router Power Management

- Activity based power management
- Individual port enables
 - Queues on sleep and clock gated when port idle

Estimated Power Breakdown

Agenda

- Goals
- Architecture overview
- Processing engine
- Interconnect fabric
- Power management
- Application mapping
- Experimental results

Application Kernels

- Four kernels mapped on to architecture
 - Stencil 2D heat diffusion equation
 - SGEMM for 100x100 matrices
 - Spreadsheet doing weighted sums
 - 64 point 2D FFT (using 64 tiles)
- Kernels were hand coded in assembly code and manually optimized
- Sized to fit in the on-chip local data memory
 - Instruction memory not a limiter

Agenda

- Goals
- Architecture overview
- Processing engine
- Interconnect fabric
- Power management
- Application mapping
- Experimental results 🗲

21

Application Performance

Application Kernels	FLOP count	TFLOPS @ 4.27GHz	% Peak TFLOPS	Tiles used
Stencil	358K	1.00	73.3%	80
SGEMM: Matrix Multiplication	2.63M	0.51	37.5%	80
Spreadsheet	62.4K	0.45	33.2%	80
2D FFT	196K	0.02	2.73%	64

1.07V, 4.27GHz operation $80^{\circ}C$

Leakage Savings

Design Tradeoffs

- Core count
 - Determined by die size constraints (300 sqmm) and performance per watt requirements (10 GFLOPS/W)
- Router link width
 - 4 byte data path enables single flit transfer of single precision word
 - Crossbar area and power scales quadratically with link width
- Mesochronous implementation
 - Single clock source with scalable, low power clock distribution
- Backend design and validation benefits
 - Tiled methodology enabled rapid design by small team (less than 400 person-months)
 - Functional first silicon in 2 hours

Summary

- An 80-Core NoC architecture in 65nm CMOS
 - 160 high-performance FPMAC engines
 - Fast, single-cycle accumulator
 - Low latency, compact router design
 - High bandwidth 2D mesh interconnect
- TFLOPS level performance at high power efficiency
 - Fine grain power management
 - Chip dissipates 97W at 1TFLOPS (Stencil app)
 - Measured energy efficiency of 6 to 22 GFLOPS/W
- Demonstrated peak performance up to 2TFLOPS
- Building blocks for future peta-scale computing

Acknowledgements

- Implementation
 - Circuit Research Lab Advanced Prototyping team (Hillsboro, OR and Bangalore, India)
- Application kernels
 - Software Solutions Group (Santa Clara, CA)
 - Application Research Labs (DuPont, WA)
- PLL design
 - Logic Technology Development (Hillsboro, OR)
- Package design
 - Assembly Technology Development (Chandler, AZ)