Gigascale Sysrems Research Center

l [LLINOIS anvon GSRC

Performance Insights on Executing
Non-Graphics Applications on CUDA
on the NVIDIA GeForce 8800 GTX

Hot Chips 19

Wen-mei Hwu
with
David Kirk, Shane Ryoo, Christopher Rodrigues,
John Stratton, Kuangwei Huang

Overview QS RC

* Brief rundown of GeForce 8800 architecture
* Considerations in GPU performance optimization
* Benchmark performance

* Three case studies
* MRI image reconstruction
* | BM fluid dynamics simulation
* H.264 image comparison

* Common performance limitations
* Concluding remarks

ITWMFFET <4Invibia 2

GeForce 8800 GPU Computing

Up to 65,5352 thread blocks with up to 512 threads each
128 cores, 367 GFLOPS, 768 MB DRAM, 8GB/s total BW
Resources allocated at per-block granularity

Host
|

v
Input Assembler
v

Thread Execution Manager

Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data
Cache Cache Cache Cache

Parallel Data Parallel Data Parallel Data
Cache Cache Cache Cache

{fresre] | Ffrevere [roor | resor] [resere 1| resee [Troors Fl Evorr

Computation Strategy GSRC
* We make use of compute resource and hide global
memory latency via:
* Many independent threads
* Independent instructions within a thread
* Use of several local memories per Streaming

Multiprocessor to reduce latency, avoid redundant global
memory accesses and thus bandwidth saturation

* Memory latencies must be overlapped with useful
work to achieve good overall performance

* Global memory latency is at least 200 cycles (estimated)
* Texture memory accesses and some floating-point
operations also have long latencies

TWIERET < nviba

4 Hot Chips 19

Additional Performance Considerations qg RC

Developers need to keep additional potential
limiters in mind:

e Stalls and bubbles in the pipeline
* Port conflicts to shared/constant memory
* Branch divergence

¢ Shared resource saturation

* Global memory bandwidth can be saturated

* Especially if hardware cannot coalesce multiple
loads/stores into fewer memory accesses

* L ocal memories and registers can also be filled,
limiting the number of simultaneously-executing
threads

ITWMFFET <4Invibia 5

Parallel Programming Experience

Application | Description Source| Kernel |% time
H . 264 SPEC ‘06 version, change in guess vector 34, 81 1 1 94 35%
SPEC ‘06 version, change to single precision o)
LBM and print fewer reports 1 ’481 285 >99%
RC5-72 Distributed.net RC5-72 challenge client code 1 ,979 21 8 >99%
Finite element modeling, simulation of 3D 0
FEM graded materials 1 ! 874 146 99%
Rye Polynomial Equation Solver, quantum [o)
RPES chem, 2-electron repulsion 1 ? 1 04 281 99/)
PNS Petri Net simulation of a distributed system 322 1 60 >99%
Single-precision implementation of saxpy, used 0
SAXPY in Linpack’s Gaussian elim. routine 952 31 >99/)
TRACF Two Point Angular Correlation Function 536 98 96%
Finite-Difference Time Domain analysis of 2D 0
FDTD electromagnetic wave propagation 1 365 93 1 6%)
MR| 'Q Computing a matrix Q, a scanner’s 490 33 >99%

configuration in MRI reconstruction

Speedup of GPU-Accelerated Functions GSRC

210 457 316
431 263

60
=3 =0 1 @ Kernel
°C m Application
[<b) |
L 40
25
:) —-—
oo
O P

10 -

0 <

* GeForce 8800 GTX vs. 2.2GHz Opteron 248
* 10x speedup in a kernel is typical, as long as the kernel can occupy

enough parallel threads
* 25x to 400x speedup if the function’s data requirements and control

flow suit the GPU and the application is optimized
* Keep in mind that the speedup also reflects how suitable the CPU is for

executing the kernel

ITWMFFET <4Invibia :

Magnetic Resonance Imaging GSRC

* 3D MRI image reconstruction from non-Cartesian
scan data is very accurate, but compute-intensive
* 416x speedup in MRI-Q (267.6 minutes on the CPU,

36 seconds on the GPU)
* CPU - Athlon 64 2800+ with fast math library

* MRI code runs efficiently on the GeForce 8800
* High-floating point operation throughput, including
trigonometric functions
* Fast memory subsystems
* Larger register file
* Threads simultaneously load same value from constant memory

* Access coalescing to produce < 1 memory access per thread, per
loop iteration

ITWMFFET <4Invibia 8

Computing Q: Performance

1400

GSRC

1200 1—1164.1 1156.5

416x

|

Runtime (minutes)

267.6

\
/)
|

i 953.9
1000 9237
800 -
600 -
400.1
400 1
200 1
0 ‘

v
3.3 0.6

V1 (cpu,dp) V2 (cpu,dp, V3 (cpu,dp, V4 (cpu, sp) V5 (cpu, sp, V6

(cpu, sp, V7 (gpu, sp) V8 (gpu, sp,

sse2) sse2, fm) sse2) sse2, fm) fm)

CPU (V6): 230 MFLOPS GPU (V8): 96 GFLOPS

ITVIFRET <nviba ,

LBM Fluid Simulation (from SPEC)

Simulation of fluid flow in a volume divided
into a grid
* |t’s a stencil computation: A cell’s state at
time t+1 is computed from the cell and its
neighbors at time t
¢ Synchronization is required after each
timestep - achieved by running the kernel
once per timestep
* Local memories on SMs are emptied after
each kernel invocation
¢ Entire data set moves in and out of SMs for
every time step
* High demand on bandwidth
* Reduce bandwidth usage with software-
managed caching
* Memory limits 200 grid cells/threads per SM

* Not enough threads to completely cover global
memory latency

IVMIFRET <nviba .

Hot Chips 19

GSRC

Flow through a cell (dark
blue) is updated based on its
flow and the flow in 18
neighboring cells (light blue).

Hot Chips 19

H.264 Video Encoding (from SPEC) qg RC

* GPU kernel implements sum-of-absolute difference
computation
* Compute-intensive part of motion estimation
e Compares many pairs of small images to estimate how closely they
match
* An optimized CPU version is 35% of execution time
* GPU version limited by data movement to/from GPU, not compute
* Loop optimizations remove instruction overhead and
redundant loads
e ..and increase register pressure, reducing the number of
threads that can run concurrently, exposing texture cache
latency

e
IRxCT NVIDIA. " ot Chin 1

Prevalent Performance Limits qs RC

Some microarchitectural limits appear repeatedly across the
benchmark suite:

* Global memory bandwidth saturation
* Tasks with intrinsically low data reuse, e.g. vector-scalar addition
or vector dot product
¢ Computation with frequent global synchronization
* Converted to short-lived kernels with low data reuse
¢ Common in simulation programs
* Thread-level optimization vs. latency tolerance

* Since hardware resources are divided among threads, low per-
thread resource use is necessary to furnish enough simultaneously-
active threads to tolerate long-latency operations

* Making individual threads faster generally increases register and/or
shared memory requirements

* Optimizations trade off single-thread speed for exposed latency

ITWMFFET <4Invibia »

Lessons Learned GSRC

Parallelism extraction requires global understanding
* Most programmers only understand parts of an application
Algorithms need to be re-designed

* Programmers benefit from clear view of the algorithmic effect on
parallelism

Real but rare dependencies often need to be ignored

* Error checking code, etc., parallel code is often not equivalent to
sequential code

Getting more than a small speedup over sequential code is
very tricky
e -20 versions typically experimented for each application to move
away from architecture bottlenecks

ITWMERET <Invibia .

Implicitly Parallel Styized CIC++ |G RC
Programming Flow g;sDe?tlro\rI\vé

Deep analysis
w/ feedback Human
assistance 1

For increased
composability

Systematic search
for best/correct
code gen

For increased
scalability

parallel execution w/
sequential semantics

Visualizable
concurrent form

Visualizable sequential
assembly code with
parallel annotations

\ 4
For increased Debugger

supportability

14 Hot Chips 19

To Learn More QS RC

e UIUC ECE498AL - Programming

Massively Parallel Processors
(http://courses.ece.uiuc.edu/ece498/al/)

* David Kirk (NVIDIA) and Wen-
mei Hwu (UIUC) co-instructors

* CUDA programming, GPU
computing, lab exercises, and
projects

o Lectupe slides and voice
recordings

ITVIFRET <Inviba o

GSRC

Thank you! Any Questions?

ITVIFRET <Inviba .

Some Hand-coded Results

GSRC

App. Archit. Bottleneck Simult. T| Kernel X App X
H.264 Registers, global memory latency 3,936 20.2 1.5
LBM Shared memory capacity 3,200 12.5 12.3
RC5-72 Registers 3,072 17.1 11.0
FEM Global memory bandwidth 4,096 11.0 10.1
RPES Instruction issue rate 4,096 210.0 79.4
PNS Global memory capacity 2,048 24.0 23.7
LINPACK S;‘t’:ﬁlr;:g?‘e‘:ry bandwidth, CPU-GPU 12,288 19.4 11.8
TRACF Shared memory capacity 4,096 60.2 21.6
FDTD Global memory bandwidth 1,365 10.5 1.2
MRI-Q Instruction ssue rate 8,192 457.0 431.0
T P3RE0s-2008) nvipia. " ot i 1

Magnetic Resonance Imaging

GSRC

* MRI code makes effective use of fast memory subsystems
* Larger register file allows voxel data to be stored in registers
* Threads load the same values from constant memory in the same

cycle

* 5 load instructions per iteration, but with access coalescing, this
produces < 1 memory access per thread, per loop iteration

CPU Code

for(i=0 to max_K) {
for (j = 0 to max_X) {
w = 2PI * dot(k[i], x[i]);
cw = cos(w); sw = sin(w);

FHD_r[j] += RP_r[i] * cw
- RP_i[i] * sw;
FHD_i[j] += RP_i[i] * cw
+ RP_r[i] * sw;

}
)
IMFRET <nviba .

GPU Code
Jocal_x = x[threadIdx.x];
local_r = FHD_r[threadIdx.x];

local_i FHD_i[threadIdx.x];
for(i=0 to max_K) {
w = 2PI * dot(k[i]l, Tocal_x);
cw = cos(w); sw = sin(w);

local_r += RP_r[i] * cw
- RP_i[i] * sw;
local_i += RP_1i[i] * cw
+ RP_r[i]l * sw;
3

FHD_r[threadIdx.x]
FHD_1i [threadIdx.x]

local_r;
localesichips 19

The Compiler/Tools Challenge Galil

“Compilers and tools must extend the human’s ability
to manage parallellsm by domg the heavy lifting.”

* To meet thlS challenge the compiler must
¢ Allow simple, effective control by programmers
* Discover and verify parallelism
¢ Eliminate tedious efforts in performance tuning
* Reduce testing and support cost of parallel programs

ITWVERET <Anvibia o

Brief Overview of Architectural Features QS RC

* Threads are associated into 32-thread warps,
which issue concurrently

* Threads are grouped into blocks of up to 512
threads which share a block of shared memory

* Hardware resources (thread contexts, registers,
shared memory) allocated at per-block granularity

¢ Several memories

ITWVERET <Anvibia .

Key Performance Considerations Galil

* Architecture provides hardware contexts for many more
threads than execution resources
* Execution throughput is the bottom line

* Categories of performance detractors

e Stalls and bubbles in the pipeline
* Port conflicts to shared/constant memory
* Branch divergence
* Long-latency operations
* Need to run enough independent threads on the hardware to cover a
thread’s latency with work from other threads
* Shared resource saturation
* Global memory bandwidth can be saturated

* Especially if hardware cannot coalesce multiple loads/stores into
fewer memory accesses

RW NVIDIA. ” O

Machine Utilization Rules of Thumb qg RC

* Global memory load takes at least 200 cycles (estimated)
* |ssuing an instruction for one warp takes 4 cycles (32
threads / 8-wide execution units)
* Need to issue at least 50 times (200 cycles / 4 cycles) to
cover the latency
* Issue independent instructions following the load
* |ssue instructions from other warps that are at a different PC
* To furnish enough threads for 24 independent warps, the
kernel must be limited to
¢ <10 registers per thread
* <21 bytes of shared memory per thread
* Most kernels we worked with required more resources than this
* Completely hiding long latency operations is still tricky

R%Ti' NVIDIA. » e

