

GeForce 8800 Architecture Overview

Graphics pipelines for last 20 years *Dedicated hardware per processing stage*

Vertex

Triangle

Pixel

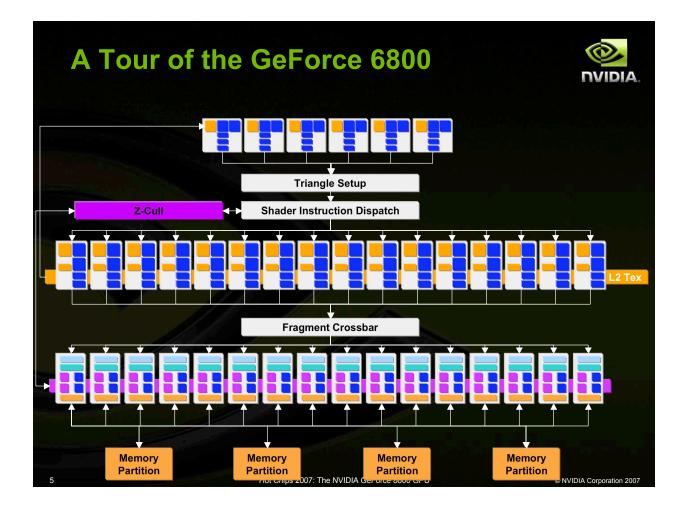
ROP

© NVIDIA Corporation 2007

© NVIDIA Corporation 2007

Fixed Transform & Lighting, evolved to programmable vertex shading

Hot Chips 2007: The NVIDIA GeForce 8800 GPU

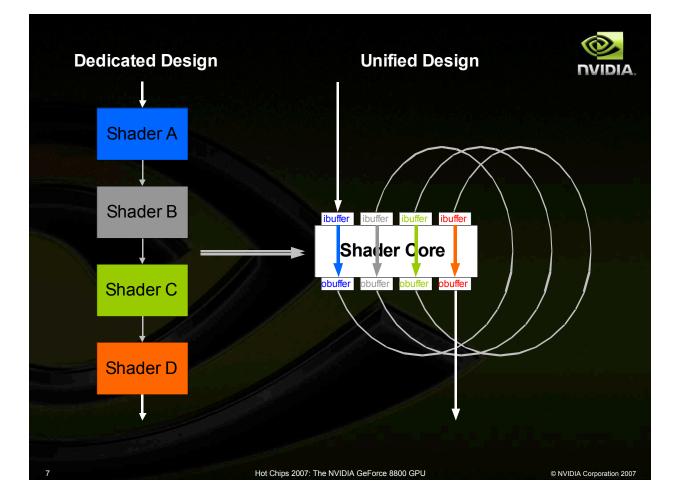

Triangle, point, line – setup

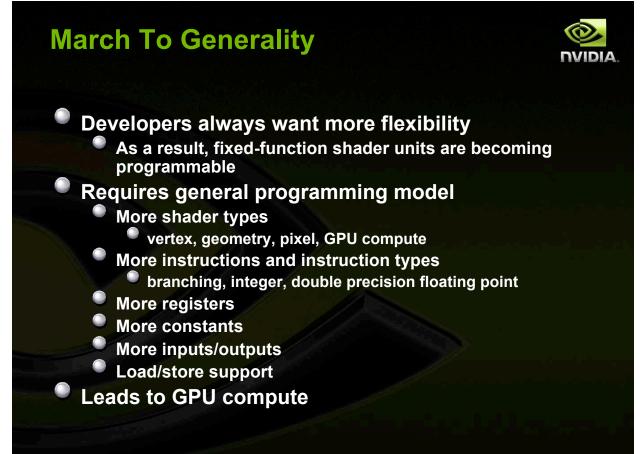
Flat shading, texturing, evolved to programmable pixel shading

Blending, Z-buffering, antialiasing

Wider and faster over the years CAGR DRAM bw: 1.4x raw, 2.0x with compression

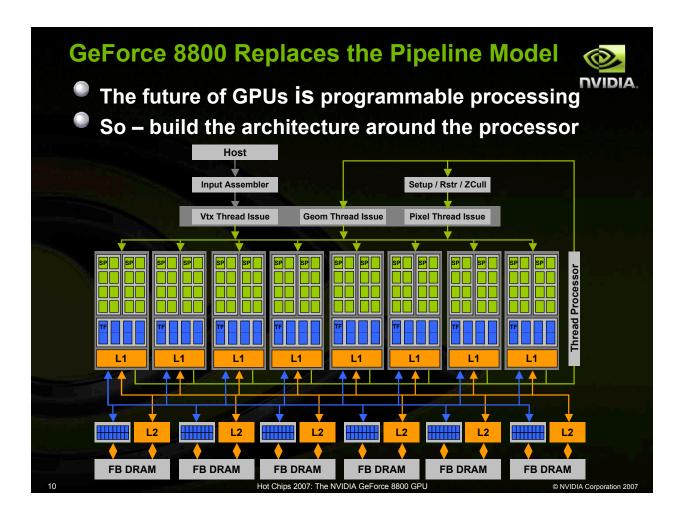
Hot Chips 2007: The NVIDIA GeForce 8800 GPU




Unified Shader Processor Architecture

GeForce 8800 has a unified shader processor architecture

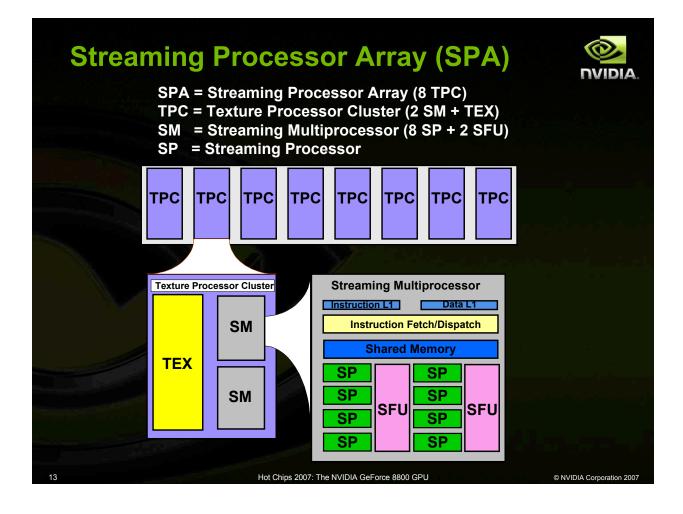
- All shader stages use the same instruction set
- All shader stages execute on the same units vertex, geometry, pixel shaders
- Permits better sharing of expensive hardware shader resources
 - Building dedicated units often results in underutilization due to the workload of the application
 - When one unit becomes the bottleneck, other pipelined units are less efficient
 - Dynamic and static thread/resource load balancing



© NVIDIA Corporation 2007

Shader Model Progression

	DX8 SM1.x	DX9 SM2	DX9 SM3	DX10 SM4	
Vertex Instructions	128	256	512	0.41-	
Pixel Instructions	4+8	32+64	512	64k	
Vertex Constants	96	256	256	16x4096	
Pixel Constants	8	32	224		
Vertex Temps	16	16	16	4096	
Pixel Temps	2	12	32		
Vertex Inputs	16 16 16		16	16	
Pixel Inputs	uts 4+2 8+2		10	32	
Render Targets	// 1	4	4	8	
Vertex Textures	n/a	n/a	4	400	
Pixel Textures	8	16	16	128	
Tex Size			2k x 2k	8k x 8k	
Int Ops				~	
Load Op		-	<u></u>	~	
Derivatives				~	
Vertex Flow Control	n/a	Static	Static/Dyn	Dunamia	
Pixel Flow Control	n/a	n/a	Static/Dyn	Dynamic	



Streaming Processor Array

SPA contains 8 Texture Processor Clusters (TPC) Each TPC contains 2 Streaming Multiprocessors (SM) and 1 texture pipe (TEX) SM executes shader stages

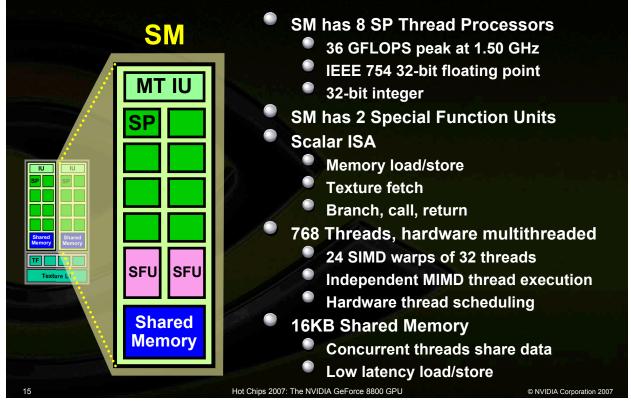
- Communicates with the Raster Operation Processors (ROP) which have Frame Buffer (FB) memory access
- There are 6 ROPs and 6 64b FB partitions

Design Goals of the SM

Independent processor and memory pipelines

- Better memory latency hiding
- Better for GPU Compute

Unified Processor

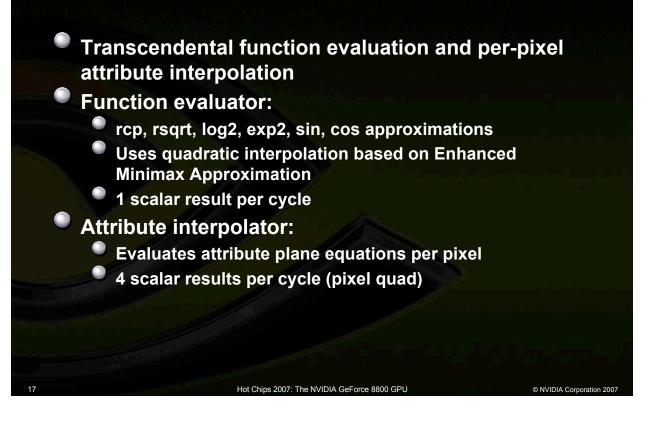

- In a fixed-function fully-pipelined architecture, a shader stage bottleneck stalls the entire pipeline
- Unified design allows shader stage load-balancing
- Scalar ALUs instead of vector
 - Shader programs are becoming longer and more scalar, hard to be efficient with a vector architecture

Compilable

Shader programs should be compiler-friendly

SM Multithreaded Multiprocessor

SP Multiply-Add (MAD) Unit


- MAD unit operates on fp32 operands, produces fp32 output
- Performs all fundamental FP operations: FADD, FMUL, FMAD, FMIN, FMAX
- Performs integer ops and conversions
- Fully-pipelined, but latency is not over-optimized at the expense of area

FADD and FMUL IEEE 754 compliant

- Round-to-nearest-even and round-to-zero
- Special numbers properly handled
- Denormal inputs and outputs are flushed-to-zero

Special Function Unit (SFU)

SFU: Attribute Interpolation

Plane equation unit generates plane equation fp32 coefficients to represent all triangle attributes
 <u>A, B, and C are fp32 interpolation parameters</u>

associated with a given triangle's attribute U

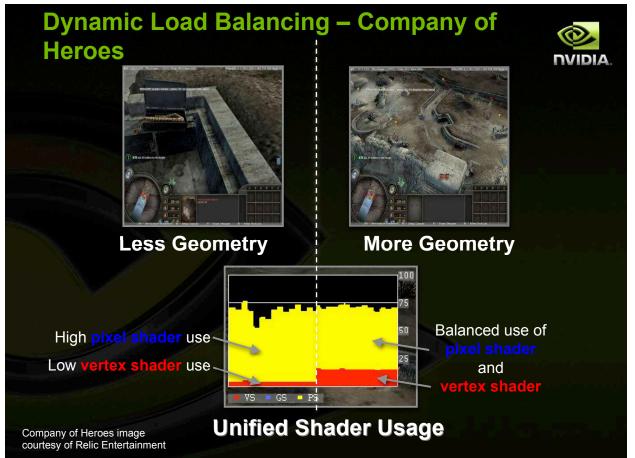
- Resulting attribute value U is fp32
- SFU must interpolate the value of each attribute per (x,y) for all pixels to be drawn:

U(x,y) = A*x + B*y + C

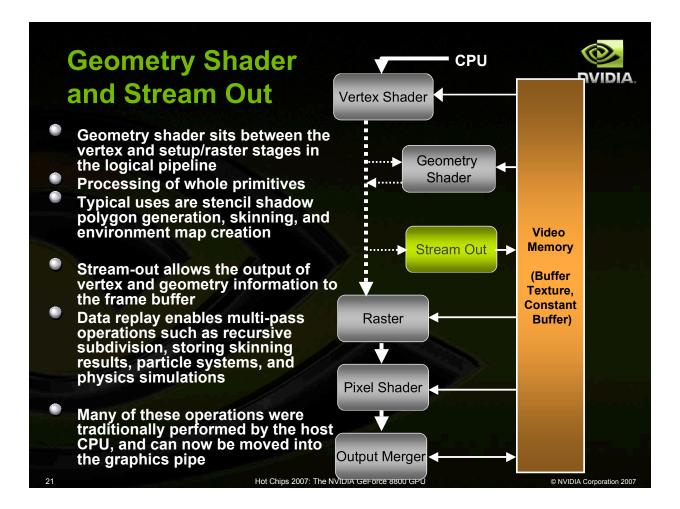
For perspective correct interpolation:

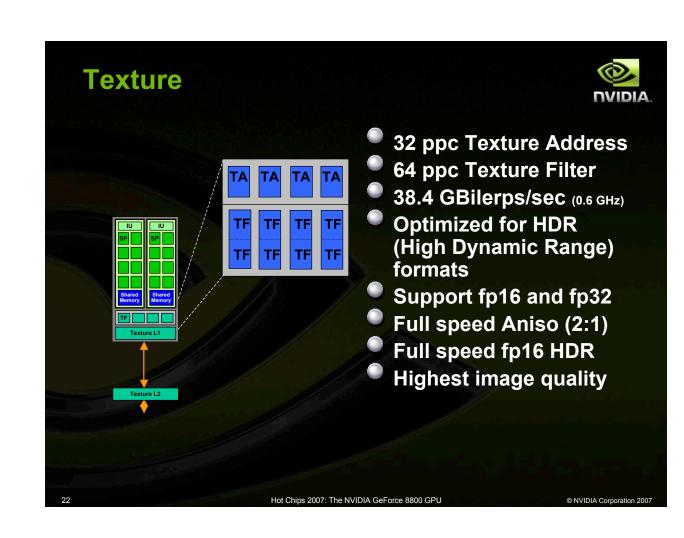
- Interpolate 1/w, and reciprocate to form w
- Interpolate U/w
- Multiply U/w and w to form perspective-correct U

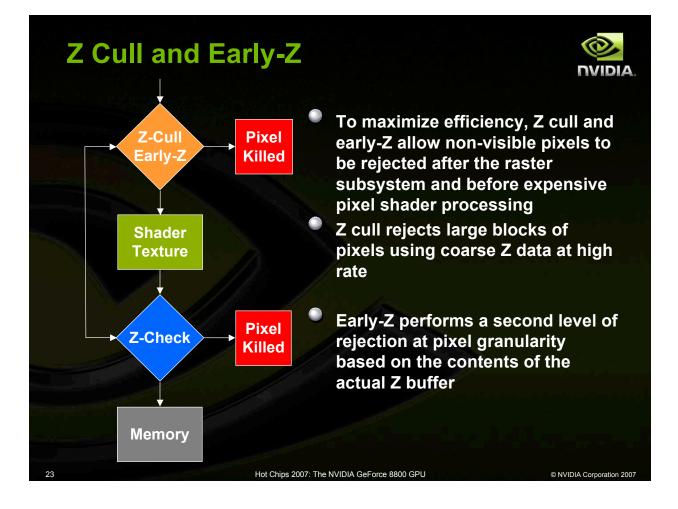
Transcendental Function Statistics

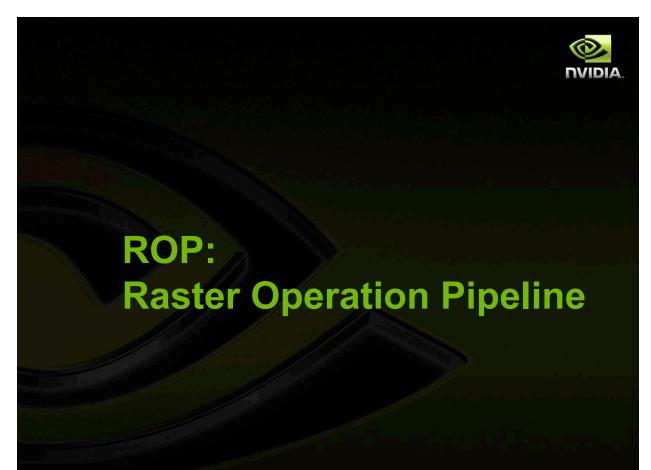

19

© NVIDIA Corporation 2007

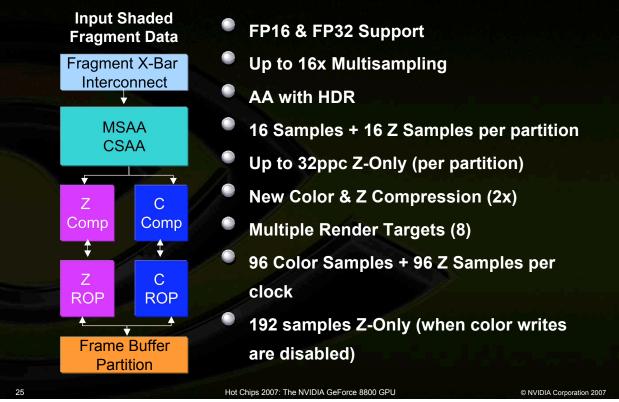

Function	Input Interval	Accuracy (good bits)	Ulp error	% exactly rounded	Monotonic	
1/X	1/X [1,2)		0.98	87%	Yes	
1/sqrt(X)	[1,4)	23.40	1.52	78%	Yes	
2 ^x	[0,1)	22.51	1.41	74%	Yes	
log ₂ X	[1,2)	22.57	n/a	n/a	Yes	
Sin/cos	[0,pi/2)	22.47	n/a	n/a	No	

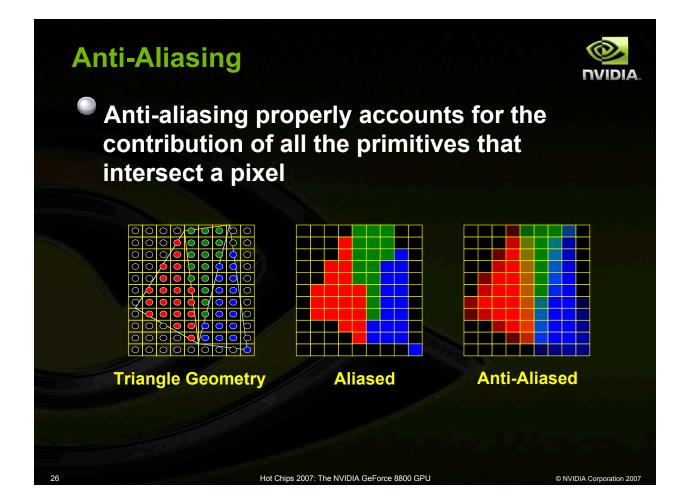

Hot Chips 2007: The NVIDIA GeForce 8800 GPU




Hot Chips 2007: The NVIDIA GeForce 8800 GPU

© NVIDIA Corporation 2007





Detail of a single ROP pixel pipeline

Multisampling

Store a unique color and depth value for each pixel sub-sample, but re-use <u>one calculated color</u> for all color sub-samples
 Strengths

 Only one color value calculated per pixel per triangle
 Z and stencil evaluated precisely; interpenetrations and bulkheads correct

Weaknesses

- Memory footprint N times larger than 1x
- Expensive to extend to 8x quality and beyond
- Multisampling evolved from $1 \rightarrow 2 \rightarrow 4$ samples
- Beyond 4 sub-samples, storage cost increases faster than the image quality improves
 Even more true with UDB
 - Even more true with HDR
 - 64b and 128b per color sub-sample!
 - For the vast majority of edge pixels, 2 colors are enough
 - What matters is more detailed coverage information

Hot Chips 2007: The NVIDIA GeForce 8800 GPU

Coverage Sampled Antialiasing (CSAA)

© NVIDIA Corporation 2007

Compute and store boolean coverage at 16 sub-samples Compress the redundant color and depth/stencil information into the memory footprint and bandwidth of 4 or 8 multisamples

Performance of 4xAA with 16x quality

- Low cost per coverage sample
- Just works with existing rendering techniques
 - HDR, stencil algorithms
- Efficient use of shader and texture hardware
- Boolean, not scalar, coverage
 - No bleed-through
 - Fallback to the stored sample count quality (4x or 8x) for highcontrast Z/stencil results
 - Inter-penetrating triangles
 - Stencil shadow volumes

Antialiasing Modes Comparison

AA Mode:	Brute-Force Supersampling		Multisampling		Coverage Sampling				
Quality level:	1x	4x	16x	1x	4x	16x	1x	4x	16x
Texture/Shad er Samples	1	4	16	1		1	1	1	1
Stored Color/Z Samples	1	4	16	1	4	16	1	4	4
Coverage Samples	1	4	16	1	4	16	1	4	16
			ling rec hader					g reduc & banc	
		Hot C	hips 2007: The	NVIDIA GeFo	rce 8800 GPU			© NVIDIA C	Corporation 200

GeForce 8800 Scalability

Architecture was designed for scalability

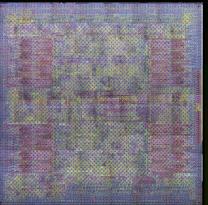
 value, mainstream, enthusiast segments

 Number of SMs, TPCs and ROPs can be varied allowing the right mix for different performance and cost targets
 Upward scalability is available with Scalable Link Interconnect (SLI), allowing multiple GPUs to be connected together

Hot Chips 2007: The NVIDIA GeForce 8800 GPU

GeForce 8800 Performance

© NVIDIA Corporation 2007


	7900GTX	8800GTX	
Shader Model	SM3	SM4	
Vertex Shader Units	8 (vector)		
Pixel Shader Units	24 (vector)	128 (scalar)	
Shader Math (GFlops)	232	576	
Texture Filter	12 GBilerp/sec	38 GBilerp/sec	
ROP Processing	Up to 24ppc	Up to 192ppc	
Memory Width	256-bit	384-bit	
Memory Bandwidth	51.2 GB/sec	104 GB/sec	

GeForce 8800 Implementation

 681 million transistors, 470 mm²
 Manufactured in TSMC 90nm
 Multiple clock domains
 384 pin memory interface connecting to 768 MB of DDR frame buffer memory, yielding 104 GB/sec of bandwidth (1.08 GHz)

Typical operating power consumption of 150 W

GeForce 8800 Summary

© NVIDIA Corporation 200

Processor based architecture
previous architectures are graphics pipeline based
Scalable number of processing cores
576 GFLOPS/sec just for shader execution (1.5 GHz)
scalar processors instead of 4-vector
Hardware multithreading
12288 threads
zero-overhead thread scheduling
Scalable number of memory partitions
supports non-power of 2 partition count
Adds GPU Compute

Hot Chips 2007: The NVIDIA GeForce 8800 GPU