

IBM STG

Agenda

- Historical background
- POWER6TM chip components
- Interconnect topology
- Cache Coherence strategies
- POWER6TM Coherence Mechanism
- System measurements and results

IBM STG

POWER6[™] Chip Overview

- Ultra-high frequency dual-core chip
 - 7-way superscalar, 2-way SMT core
 - 9 execution units
 - 2LS, 2FP, 2FX, 1BR, 1VMX,1DFU
 - 790M transistors
 - Up to 64-core SMP systems
 - 2x4MB on-chip L2
 - 32MB On-chip L3 directory and controller
 - Two memory controllers on-chip
- Technology
 - CMOS 65nm lithography, SOI
- High-speed elastic bus interface at 2:1 freq
 - I/Os: 1953 signal, 5399 Power/Gnd

IBM

POWER6[™] Interconnect

- Memory DIMMs
 - 8 channels
 - Point to Point Elastic interface at 4X DRAM frequency
 - Custom on-DIMM buffer chip
- L3 data
 - 32 MB capacity
 - Dual 16 byte (8 read + 8 write) interface at ½ CPU frequency
- SMP interconnect
 - Three Intra-Node SMP buses for 8way Node
 - Two Inter-Node SMP buses for up to 8 Nodes

Hot Chips 19

© 2007 IBM Corporati

IBN

IBM STG

Example System topology

IB

POWER6[™] Cache Coherence

Background

IBM STG

- Large SMP issues
- Broadcast and Directory schemes
- Workload considerations
- POWER6TM scheme details

IBM STG

Cache Coherence strategies

- Large SMP issues
 - Data transfer latency
 - Coherence resolution latency
 - Race between DRAM and global snoop
 - Peak throughput
 - Local thread interference

Broadcast Based Coherence

10

IE

Broadcast vs Directory Highlights

Latency

- Memory latency ~equivalent
- Cache intervention, Broadcast is much faster

Request Overhead

- Broadcast
 - N directory lookups per request
- Directory
 - 1 primary directory lookup per request

IBM STG

Workload considerations

- HPC/Scientific
 - High bandwidth requirements
 - Regular memory access patterns
- Commercial/OLTP
 - High cache 'intervention' rates
 - Low inherent ILP
 - Irregular memory access patterns
- Virtualization
 - Workload migration
 - Heterogeneous environment

IEF

POWER6[™] Approach

SubSpace Snooping

- Hybrid approach: Combination of cache snooping and directory lookup
- Design Principle: Provide ideal latency of cache snooping, with high scalability provided with full directories.

Design components

- Cache States: MESI enhanced with line location residue.
- Memory Directory: Low cost coherence information stored with cache line data
- Coherence Predictor: Prediction of cache line system state.
- Two Tiered: Node pump and System pump

IBM STG

Cache state additions over MESI

- Invalid State variants
 - In: Line invalidated by CPU on same local node
 - Ig: Line invalidated by CPU outside local node

Valid State variants

- *Tn*: Line shared only by CPU on same node. Previously Modified state.
- *T*: Line shared by CPU outside local node. Previously Modified state.
- *Ten*: Line shared only by CPU on same node. Previously Exclusive state.
- *Te*: Line shared by CPU outside local node. Previously Exclusive state.

IB

Memory directory

IBM STG

- Single bit per cache line 'buried' in ECC overhead (no additional memory bits added).
- Bit indicates line has moved off node.
- Used as offline coherence check outside critical latency path.

IBM STG

Coherence Predictor details

- Inputs:
 - System address
 - Thread id
 - Operation type
 - History
- Predictor:
 - Array of 2 bit sat counters, biased towards global
 - Local miss-predict penalty greater than Global miss-predict.

Operation Completed on-node

Operation Completed off-node

IBM STG

SubSpace snoop example

18

IBM

Prediction Accuracy

Highly accurate cases (~100% correct)

- Hot shared lines -> cache residue
 - Locking/synchronizing
- Embarrassingly parallel -> all local
 - SpecRate
 - Stream
- Regular Data layout -> consistent regions
- Regular phases -> temporal predictability

Complex data access patterns

Commercial workloads > 95% prediction accuracy

mix fraction

Sustained system memory bandwidth running HPC loop

IBM STG

In closing...

- POWER6TM coherence scheme provides latency of broadcast combined with high scalability of distributed directory
- Key Innovation
 - Combining fast predictive broadcast with accurate directory