

A Low-Latency, High-Bandwidth Ethernet Switch Chip

Company Overview

Fabless Semiconductor Company (50+ people)

Formed out of Caltech (1/00)

Shipping two low-latency product families today

NEW ENTERPRISE ASSOCIATES

infinity | capital

WORLDVIEW

Backed by top-tier investors

FocalPoint: an Ethernet Switch Chip

The world's most powerful Ethernet switch chip

- Highest port density (24 10GE ports)
- Lowest latency (200ns)
- Highest performance (240Gbps)
- Most power efficient (<150mW/Gbps)
- Most integrated (single chip)
- **Most scalable** (fat trees, 1,000s of ports)

FocalPoint Evaluation Platform

(The world's most integrated 10G Ethernet system)

Agenda

Datacenter Interconnect Requirements FocalPoint Chip FocalPoint in Datacenter Applications

Problem: Disjointed Datacenter Inhibits Scale

Multiple interconnects create islands of specialization

- Network technologies in today's data center:
 - Cluster: Optimized for low latency (Infiniband)
 - Data: Low latency, robust delivery (Fibre Channel)
 - Comms: Secure, flexible, cheap, interoperable (Ethernet)
- Ethernet is the industry's preferred choice
 - Poor latency characteristics led to specialized solutions

Enabling Low-Latency Fabrics

Solutions balance additive contributors to latency

Three contributors to switch latency:

- 1. Store-and-forward latency (last bit in to first bit out)
 - Typical vendor: 3µS per 10GE switch hop
 - FocalPoint: 150nS per 10GE switch hop
- 2. Packet serialization time
 - Typical: 0.8nS/byte at 10GE and 8nS/byte at 1GE
 - FocalPoint cut-through: 50nS (packet independent)
- 3. Scheduling latency
 - Effects store-and-forward and cut-through equally
 - Linearly dependent on egress port load
 - Solution: add more ports (FocalPoint has 24, others have 20 or less)

Latency and Performance Under Load

Functional Ethernet never much more than half loaded

Performance Comparison

Switch latency should be 10-20% of system latency

Comparison Assumptions

System

- 16 servers per rack switch
- 20P and 24P switches
- 4 or 8 uplinks
- 25G total uplink BW
- 3 and 5 hop networks

Per-hop collision free

- 33% 16:4 configuration
- 67% 16:8 configuration

Store-n-Forward Latency

- 3 µS standard vendor
- 150 nS FocalPoint

Traffic Profile

- 40% 64B
- 40% 1500B
- 20% Even (64B,1500B)

3 Hops									
Frame Size	FP-CT Unloaded	FP-SF Unloaded	V-SF Unloaded	FP-CT Loaded	V-SF Loaded				
Byte	(µS)	(µS)	(µS)	(µS)	(µS)				
64	0.6	0.6	9.2	1.5	<mark>15.6</mark>				
512	0.6	1.7	10.2	1.5	<mark>16.7</mark>				
1500	0.6	4.1	12.6	1.5	<mark>19.0</mark>				
10000	0.6	24.5	33.0	1.5	39.4				

5 Hops								
Frame Size	FP-CT Unloaded	FP-SF Unloaded	V-SF Unloaded	FP-CT Loaded	V-SF Loaded			
64	1.0	1.0	15.3	2.6	26.0			
512	1.0	2.8	17.0	2.6	27.8			
1500	1.0	6.8	21.0	2.6	31.7			
10000	1.0	40.8	55.0	2.6	65.7			

FP-CT: FocalPoint in cut-through mode

FP-SF: FocalPoint in store-and-forward mode

V-SF: Vendor (typical) 10GE product in store-and-forward mode Unloaded: 0% load – a measure of fabric fall-through latency Loaded: 33% load for 8 uplinks, 66% load for 4 uplinks

Port Density Enables Cost Effective Scale

Three-Tier Fat Tree

Two-Tier Fat Tree

Agenda

Datacenter Interconnect Requirements FocalPoint Chip

FocalPoint in Datacenter Applications

FocalPoint Project Goals

Fulcrum proprietary IP

- 24 10G Ethernet ports
- 200nS fall-through latency
- 240Gbps shared memory fabric
 - Fully non-blocking fabric
 - Full-rate multicast
- Standards compliant, feature rich
 - Good QoS and congestion mgmt
 - 16K MAC addresses
 - 4K VI AN and STP tables
 - TSMC 0.13µm FSG process
 - All standard flows
 - Fully outsourced GDS to customer ship
- < 1W per port, typical

Architecture Enabling Circuits

Two key IP blocks differentiate the product

720 MHz SRAM

- 1200 MHz interconnect
- 76.8 GB/s throughput
- Scalable for larger

Key Benefits:

- 3 nS latency (including arbitration)
- Terabit(s) per square millimeter
- Usage based power consumption
- 2x the speed of vendor cores (same size, density, yield)
- Small block optimized

FocalPoint Hardware Architecture

FocalPoint Latency Detail

Ball-to-Ball Latency is less than 200ns

Bridge Features in the Data Center

Complete Ethernet Feature Set

Bridge Features

- 16k MAC address entries
- All spanning tree variants
- Learning and aging controls

• VLANs (IEEE 802.1Q)

- 4k VLAN entries
- Double tagging (Q-in-Q)
- Port-based flood groups
- 4k Spanning Trees (IVL)

• QOS

- Per port and shared memory watermarks
- 802.1p 8 priorities per port
- Pause & packet discard
- 100 Queues
- Transmission selection
- Link Aggregation
- Security
 - 802.1x & MAC Address Security
- Layer 2 classification engine
 - Drop, Mirror, change priority
- Statistics
 - >1,000 64 bit counters

Clustering enhancements

- Flexible link agg -- 12 port trunks
- Fat tree support -- HW learning, aging
- Stacking -- In server clustering

CBB

FocalPoint Chip Plot

Over 100 million transistors

FULCR

microsy

FocalPoint Status Report

FocalPoint is in production

Recent External Validation

Industry-leading latency and performance, as expected

www.fulcrummicro.com

Agenda

Datacenter Interconnect Requirements FocalPoint Chip Architecture FocalPoint in Datacenter Applications

Validated End-to-End Latency

Latency comparable to specialty fabrics

Lowest Ethernet latency – ever!

2.4µs, application-to-application (MPI)

	MX/Myrinet	MX/Ethernet	OpenIB/InfiniBand
Switch Vendor	Myricom	Fulcrum	Mellanox
Ping Pong Latency	2.4µs	2.4µs	4.0µs
Two-way data rate	2,397 MB/s	2,162 MB/s	1,902 MB/s

Lowest full iWARP latency – ever! <10µs, application-to-application (MPI)

Lowest 1G Ethernet latency – ever! <10µs to the application

More headlines coming soon...

Data Center Switch (Two-Tier Fat Tree)

• Features

- 288 10GE ports
- CX-4 and XFP line cards
- Non-blocking architecture
- 0.6µS port-to-port latency
- 192,000 MAC addresses (effective)
- Single-switch software image
- 100% multicast bandwidth
- Rich Ethernet L2 feature set
- Composition
 - 24 ports per blade
 - 36 chips per chassis
- Extremely cost effective
- Significant industry interest

Fabric Card (6)

Hash Efficiency (288-Port Switch)

1.05 0 2 4 Chips 6 8 10 0.95 5 10 15 20 0 Ports

- SA-DA hash for 8k
 MAC addresses
- Mesh round robin
- Each pixel is a port for 12 spine chips
- +/- 5% asymmetry
- Load independent

www.fulcrummicro.com

Memory Utilization for Multiple Profiles

Maximum memory of 36 chips

Three-Tier Fat Tree Architecture

~1µs latency from any port to any other port

Available Bandwidth in Multi-Tier Fat Trees

Thank You!

"Fulcrum is betting that by eliminating the latency issues with Ethernet switching, the vast ecosystem that surrounds Ethernet will drive much-needed consolidation."

Simon Stanley, Research analyst for Light Reading's Comm Chip Insider

