
Zurich Research Laboratory

Hot Chips 18 August 2006 www.zurich.ibm.com

Jan van Lunteren

A Novel Processor Architecture for

High-Performance Stream Processing

2

Zurich Research Laboratory

Hot Chips 18 © 2006 IBM Corporation

Agenda

1. Introduction

2. High-Level Concept

3. Programmable State Machine

4. Novel Processor

5. Instruction Cache and Prefetch

6. Experimental Results

7. Summary

3

Zurich Research Laboratory

Hot Chips 18 © 2006 IBM Corporation

Introduction

At the IBM Zurich Research Laboratory, we have started a research

project that examines opportunities for novel processor concepts which

deviate from the traditional (“Von Neumann”) processor architecture

The objective is to realize a new type of programmable “general-

purpose” coprocessor that is optimized for applications that run into

performance and power problems on conventional processors

Initial focus is on accelerating applications that operate on streams of

data such as XML processing, compression, pattern matching (IDS),

encryption and networking

This project was triggered by current trends in the processor industry,

where physical limitations and power issues force a shift towards

increasingly parallel processing on multi-core architectures

4

Zurich Research Laboratory

Hot Chips 18 © 2006 IBM Corporation

High-Level Concept

VLIW type of processor architecture comprised of a large number of

diverse functional units, ranging from ALUs to complex search engines

� large variety in execution times and amount of data processed by

functional units

Targets: clock frequency 1-2 GHz, data processing rate >10 Gb/s

Challenge: flexible programmability combined with high performance

Novel approach for instruction fetch and issue

� enables dynamic scheduling of collections of functional units to

operate in pipelined and parallel fashion on input data

� powerful conditional branch capabilities

– one multi-way branch involving up to 256 targets in each cycle

– evaluation of multiple and complex conditions for each branch

– direct testing of input data

5

Zurich Research Laboratory

Hot Chips 18 © 2006 IBM Corporation

Funct.
UnitInstruction Cache Data Cache

High-Level Concept

Local
Storage

Register
Array

Instruction

Fetch & Issue

Unit

input stream(s)

output

instructions

status

results

L2 cache
main memory

Funct.
Unit

In each clock cycle, the instruction fetch & issue unit monitors the
current input value and the status/results of the functional units

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

6

Zurich Research Laboratory

Hot Chips 18 © 2006 IBM Corporation

In response, it will dispatch instructions to selected (or all)

functional units within one clock cycle

Funct.
UnitInstruction Cache Data Cache

High-Level Concept

Local
Storage

Register
Array

Instruction

Fetch & Issue

Unit

input stream(s)

output

instructions

status

results

L2 cache
main memory

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

7

Zurich Research Laboratory

Hot Chips 18 © 2006 IBM Corporation

High-Level Concept

Conventional processor (“Von Neumann”)

Instructions are identified and selected for

execution based on their addresses

Basic instruction execution flow is sequential

(program counter is incremented by default)

Conditional branches allow the instruction

execution flow to be changed by evaluating

typically one simple condition (e.g., greater

than, less than, equal to)

addr instruction

addr+4 instruction

addr+8 instruction

addr+12 instruction

addr+16 branch if zero +20

...

addr+36 instruction

addr+40 instruction

addr+44 instruction

addr+48 instruction

addr+52 instruction

Multiple and/or more complex conditions have to be translated into

a sequence of several instructions and conditional branches

Example: “Is the input character a legal name character in a given

programming or markup language?”

8

Zurich Research Laboratory

Hot Chips 18 © 2006 IBM Corporation

High-Level Concept

Novel processor – general concept

Instructions are associated with

one or multiple conditions

In each cycle, all conditions for a

current instruction group are

evaluated simultaneously – the

highest-priority instruction for which

all conditions match is selected

Special “branch” instructions allow

a jump to a different group of instructions

Because the execution of instructions will typically affect the

evaluation of the conditions in subsequent cycles, this will

determine the actual instruction execution flow

group_1:

 conditions instruction

 conditions instruction

 conditions instruction

 conditions branch group_2

 conditions instruction

 conditions instruction

 default instruction

group_2:

 conditions instruction

 conditions instruction

 conditions instruction

 conditions instruction

 conditions instruction

{

{conditions

evaluated

in parallel

conditions

evaluated

in parallel

9

Zurich Research Laboratory

Hot Chips 18 © 2006 IBM Corporation

High-Level Concept

Novel processor – “embodiment”

Enhanced state-transition diagram defines

numerous potential execution paths

Actual path taken during program

execution is determined by real-time

evaluation of various sets of conditions

associated with the state transitions

Instructions associated with selected

path are dispatched for execution

S
0

conditions

S
2

S
3

S
1

instructions

conditions

instructions

conditions

instructions

conditions

instructions

conditions

instructions

conditions

instructions

Enabled by new programmable state machine technology: B-FSM

10

Zurich Research Laboratory

Hot Chips 18 © 2006 IBM Corporation

Programmable State Machine

rule state input → state prior.
R0 * * → S0 0
R1 * A → S1 1
R2 S1 B → S2 2
R3 S2 C → S3 2

State transition diagrams are described by state transition rules

involving wildcards and priorities

BaRT-based FSM (B-FSM):

� rule selection based on BaRT search algorithm (hash function)

� determines the highest-priority matching transition rule in a single

cycle at clock frequencies into the GHz range

state transition diagram

state transition rules

B

A

C

A

A

A
A

A,C

A,B

A

S1

S0

S2

S3

B-FSM engine

described by

transition rules

executed

by HW engine

Transition

Rule

Memory

Rule Selector

input

State

Register

output next state

Transition

Rule

Memory

Rule Selector

input

State

Register

output next state

11

Zurich Research Laboratory

Hot Chips 18 © 2006 IBM Corporation

Novel Processor

Instruction Cache Data Cache

Local
Storage

Register
Array

input stream(s)

output

instructions

status

results

L2 cache
main memory

B-FSM

Transition Rule
Memory

Call

Stack

Input

Classifier

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

transition rule

current
state

input or
class

conditions
c1, c2, c3, .. ck

next
state

instructions i1, i2, i3, .. in

8-16 bits

16-32 bits

64-256 bits

… …

12

Zurich Research Laboratory

Hot Chips 18 © 2006 IBM Corporation

Instruction Cache Data Cache

Local
Storage

Register
Array

input stream(s)

output

instructions

status

results

L2 cache
main memory

B-FSM

Transition Rule
Memory

Call

Stack

Input

Classifier

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Novel Processor

Executable program (“binary”)

� prioritized list of transition rules

� in BaRT-compressed format

In each clock cycle, hundreds of transition rules can be evaluated in

parallel and the instructions associated with the highest-priority

matching rule are dispatched to the functional units

r1 state conditions → state instructions prior.
r2 state conditions → state instructions prior.
r3 state conditions → state instructions prior.
r4 state conditions → state instructions prior.
r5 state conditions → state instructions prior.
r6 state conditions → state instructions prior.
r7 state conditions → state instructions prior.
r8 state conditions → state instructions prior.
r9 state conditions → state instructions prior.
r10 state conditions → state instructions prior.
r11 state conditions → state instructions prior.
r12 state conditions → state instructions prior.
r13 state conditions → state instructions prior.
r14 state conditions → state instructions prior.
r15 state conditions → state instructions prior.
r16 state conditions → state instructions prior.
r17 state conditions → state instructions prior.
r18 state conditions → state instructions prior.
r19 state conditions → state instructions prior.
r20 state conditions → state instructions prior.
r21 state conditions → state instructions prior.
... →
... →
... →

state transition rules

13

Zurich Research Laboratory

Hot Chips 18 © 2006 IBM Corporation

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Data Cache

Local
Storage

Register
Array

input stream(s)

output

instructions

status

results

L2 cache
main memory

Instruction Cache

B-FSM

Transition Rule
Memory

Call

Stack

Input

Classifier

Novel Processor

Transition rules enable the programming of multiple functional units to

operate in pipelined and/or parallel fashion on input data

� rules can check the status of selected functional units and, in

response, move data between these units, temporarily buffer data,

put functional units on hold, synchronize functional units

Allows pipelines comprised of multiple functional units to be set up

dynamically

r1 state conditions → state instructions prior.
r2 state conditions → state instructions prior.
r3 state conditions → state instructions prior.
r4 state conditions → state instructions prior.
r5 state conditions → state instructions prior.
r6 state conditions → state instructions prior.
r7 state conditions → state instructions prior.
r8 state conditions → state instructions prior.
r9 state conditions → state instructions prior.
r10 state conditions → state instructions prior.
r11 state conditions → state instructions prior.
r12 state conditions → state instructions prior.
r13 state conditions → state instructions prior.
r14 state conditions → state instructions prior.
r15 state conditions → state instructions prior.
r16 state conditions → state instructions prior.
r17 state conditions → state instructions prior.
r18 state conditions → state instructions prior.
r19 state conditions → state instructions prior.
r20 state conditions → state instructions prior.
r21 state conditions → state instructions prior.
... →
... →
... →

state transition rules

14

Zurich Research Laboratory

Hot Chips 18 © 2006 IBM Corporation

Instruction Cache Data Cache

Local
Storage

Register
Array

input stream(s)

output

instructions

status

results

L2 cache
main memory

B-FSM

Transition Rule
Memory

Call

Stack

Input

Classifier

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Novel Processor

Transition rules “visualized” as state transition diagram

� state transition diagram defines all potential execution paths

� actual path taken during program execution is determined by real-

time evaluation of conditions associated with the state transitions

� instructions “along” selected path are dispatched for execution

State with one transition having no conditions: sequential execution

state transition diagram

15

Zurich Research Laboratory

Hot Chips 18 © 2006 IBM Corporation

Instruction Cache Data Cache

Local
Storage

Register
Array

input stream(s)

output

instructions

status

results

L2 cache
main memory

B-FSM

Transition Rule
Memory

Call

Stack

Input

Classifier

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Novel Processor

Support for procedure calls (call stack provides return state)

Programmable input classifier enables direct evaluation of complex

conditions based on user-definable input classes

� examples: digit, white space, legal name character (e.g., XML)

Improved storage efficiency by reducing the number of transition rules

state transition diagram

16

Zurich Research Laboratory

Hot Chips 18 © 2006 IBM Corporation

Instruction Cache Data Cache

Local
Storage

Register
Array

input stream(s)

output

instructions

status

results

L2 cache
main memory

B-FSM

Transition Rule
Memory

Call

Stack

Input

Classifier

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Instruction Cache and Prefetch
state transition diagram

Instruction cache and prefetching optimized for B-FSM operation

� integration of B-FSM functionality into cache

� hardware prefetching of instructions (transition rules)

� selective mapping of transition rules on cache lines by compiler

(enabled by B-FSM technology)

17

Zurich Research Laboratory

Hot Chips 18 © 2006 IBM Corporation

L1 Cache

Instruction Cache and Prefetch

Hash Function

Transition Rule
Cache

calculate
hash index and

memory address

compare address with
cache blocks and

select matching block

compare key with hash-
table entries and

select matching entry

calculate hash index and memory address

compare address with cache blocks
and select matching block

speculatively compare key
with hash-table entries

and select matching entry

Hash function “on top of” cache

Integrated hash function

(assumption: cache hit)

latency reduction

done

done

L2 / main memory

L2 / main memory

time

18

Zurich Research Laboratory

Hot Chips 18 © 2006 IBM Corporation

Instruction Cache Data Cache

Local
Storage

Register
Array

input stream(s)

output

instructions

status

results

L2 cache
main memory

B-FSM

Transition Rule
Memory

Call

Stack

Input

Classifier

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Funct.
Unit

Instruction Cache and Prefetch
state transition diagram

Cache-hit rate improvements (similar to conventional approaches)

� determine most-frequently taken path(s): simulation, programmer

� map corresponding transition rules on consecutive cache lines

Most probable follow-on transitions will be (pre)fetched automatically

Alternative mapping strategies (e.g., time-critical paths)

(transition rules mapped on the same cache lines)

19

Zurich Research Laboratory

Hot Chips 18 © 2006 IBM Corporation

Experimental Results

(Co)Processor concepts have been verified and validated by

simulations and (FPGA) prototypes for a range of applications

Synthesis experiments have shown the feasibility of running the B-FSM

at a clock frequency of up to 2 GHz (65 nanometer CMOS)

� max. rate of one transition per cycle out of the transition-rule cache

� actual rate depends on cache performance, program, compiler, etc.

Experience:

� funct. units do not need to run for extended times in a stand-alone

fashion, but receive new instructions from B-FSM within one or a

few cycles in response to events related to input data or other units

� this allows the functional units to be simplified and (re)used for

multiple tasks, resulting in a faster and smaller implementation

20

Zurich Research Laboratory

Hot Chips 18 © 2006 IBM Corporation

Summary

Novel Processor Architecture for Stream Processing

A single “general-purpose” (co)processor targeting multiple applications

(e.g., XML processing, pattern-matching, compression, searching)

Key features:

� VLIW type of processor with instruction fetch and issue unit

based on a high-performance programmable state machine

� efficient programming of large variety of functional units to

achieve high data-processing rates (> 10 Gb/s)

� “BISC”: B-FSM-based Instruction Scheduled Computer

Although a considerable part of the project still is in a research phase,

several key concepts and enabling technologies have already been

realized and partially made available to customers

� pattern-matching engine presented at Hot Chips 17, 2005

Making a coprocessor more general-purpose programmable does not

always require large compromises on performance and hardware costs

21

Zurich Research Laboratory

Hot Chips 18 © 2006 IBM Corporation

For more information, contact:

Jan van Lunteren

IBM Research GmbH

Zurich Research Laboratory

Säumerstrasse 4

CH-8803 Rüschlikon

Switzerland

E-mail: jvl@zurich.ibm.com

Phone: +41 44 724 8111

22

Zurich Research Laboratory

Hot Chips 18 © 2006 IBM Corporation

Backup

23

Zurich Research Laboratory

Hot Chips 18 © 2006 IBM Corporation

Programmable State Machine

BaRT-based FSM (B-FSM) technology

Rule selection by BaRT routing-table search algorithm (hash function)

State transition diagram is divided into state clusters, which are

independently mapped on BaRT-compressed transition-rule tables

Optimized clustering and state encoding within each cluster

Near-optimal filling of hash tables,

enabling high storage efficiency

Simplified hash function, enabling

fast implementation of B-FSM logic

One transition/clock cycle at 1-2 GHz

Scalable to hundreds of thousands of

states and transitions

Supports wide input and output vectors

Fast dynamic updates
state transition diagram

cluster

cluster

cluster

24

Zurich Research Laboratory

Hot Chips 18 © 2006 IBM Corporation

Publications
B-FSM-related work

J. van Lunteren, “High-performance pattern matching for intrusion detection,”

Proc. IEEE Infocom, Barcelona, Spain, April 2006.

J. van Lunteren et al., “High-performance pattern-matching engine for intrusion

detection,” Hot Chips 17, Stanford University, Palo Alto, CA, August 2005.

J. van Lunteren et al., “XML accelerator engine,” First Int. Workshop on High

Performance XML Processing, in conjunction with WWW2004, May 2004.

BaRT-related work

J. van Lunteren et al., “Fast and scalable packet classification,” IEEE Journal

of Selected Areas in Communications, vol. 21, no. 4, pp. 560-571, May 2003.

J. van Lunteren, “Searching very large routing tables in wide embedded

memory,” Proc. IEEE Globecom, vol. 3, pp. 1615-1619, November 2001.

Other

Scientific American, “Recognition engines,” January 2006.

EE Times, “CPUs take parallel turn at Hot Chips,” August 2005.

