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Speech Recognition Today 

Quality = OK Vocab = large

Quality = poor  Vocab = small

Commonality: all software apps
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Today’s Best Software Speech Recognizers

Best-quality recognition is computationally hard

For speaker-independent, large-vocabulary, continuous speech

1-10-100-1000 rule

For ~1X real-time recognition rate

For ~10% word error rate  (90% accuracy)

Need  ~100 MB memory footprint

Need ~100 W power

Need ~1000 MHz CPU

This proves to be very limiting …



© Rob A. Rutenbar 2006 Slide 4

The Carnegie Mellon In Silico Vox Project

The thesis:  It’s time to liberate speech recognition 
from the unreasonable limitations of software

The solution:  Speech recognition in silicon

Why…?

Tomorrow’s compelling apps need 100X – 1000X performance 

improvements to accomplish.  (Not going to happen in software)

We have some successful historical examples of this migration
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History:    Graphics Engines

Nobody paints pixels in software anymore!

Too limiting in max performance.   Too inefficient in power.

http://www.nvidia.com

http://www.mtekvision.com

True on the desktop (& laptop) …and on your cellphone too
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Next-Gen Compelling Applications

Audio-mining

Very fast recognizers –
much faster than realtime

App:  search large media 
streams (DVD) quickly

Hands-free appliances

Very portable recognizers –
high quality result on << 1 watt

App:  interfaces to small 
devices, cellphone dictation

Terminator 2

FIND: “Hasta la vista, baby!”

“send email 
to arnold –
let’s do lunch…”
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Our Focus:   How to Get to Fast…

Audio-mining

Very fast recognizers –
much faster than realtime

App:  search large media 
streams (DVD) quickly

Hands-free appliances

Very portable recognizers –
high quality result on << 1 watt

App:  interfaces to small 
devices, cellphone dictation

Terminator 2

FIND: “Hasta la vista, baby!”

“send email 
to arnold –
let’s do lunch…”
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About This Talk

The $2 tour:  How speech recognition works

What happens in a recognizer

An ASIC architecture

Stripping away all CPU stuff we don’t need, focus on essentials

Results 

ASIC version:    Cycle simulator results

FPGA version:   Live, running hardware-based recognizer
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How Speech Recognition Works
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(1) Acoustic Frontend
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The frontend is all DSP.  A discrete Fourier 

transform (DFT) gives us the spectra. We 

combine and logarithmically transform spectra 

in ways motivated by physiology of human ears.

time

Frame

Combine these with 

estimates of 1st and 2nd

time derivatives

Color is “how much energy”.  

in transformed spectra.

Green = low, red = high.

This pic is across a 

few sec of speech. 
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Each feature is a point in high-dimensional space

Each “atomic sound” is a region of this space

Score each atomic sound with Probability(sound matches feature)

Note: (sounds) X (dimensions) X (Gaussians) = BIG

(2) Scoring Stage

Feature

Each sound is a

Gaussian Mixture

Feature Vector
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(3) Search: Speech Models are Layered Models

YES

NO

/Y/ /EH/ /S/

/N/ /OW/
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Context Matters:    At Bottom -- Triphones

English has ~50 atomic sounds (phones) but we 
recognize ~50x50x50 context-dependent triphones

Because “AY” sound in “five” is different than the “AY” in “nine”

Five             F(-,AY)cross-word AY(F,V)word-internal V(AY,-)cross-word

Nine                  N(-,AY)cross-word AY(N,N)word-internal N(AY,-)cross-word

“AY” in “five” !=  “AY” in  “nine”
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Similar Idea at Top:  N-gram Language Model

Unigram

Trigram

Bigram
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termination

Lets us calculate 

likelihood of 

word W3
after W2
after W1

Suppose we have vocabulary 

{ W1, W2, W3, W4, …}

“W1” “W1 W2”

“W1 W2 W3”



© Rob A. Rutenbar 2006 Slide 15

Good Speech Models are BIG

This is ~64K word “Broadcast News” task

Unfortunately, many idiosyncratic 
details in how layers of model traversed
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Where Does Software Spend its Time?

CPU time for CMU Sphinx 3.0

Prior studies targeted less capable 
versions (v1, v2)

SimpleScalar & Intel Vtune

64K-word “Broadcast News” benchmark

So: It’s all backend

~0% of time!
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Memory Usage?  SPHINX 3.0 vs Spec CPU2000

Cache sizes

L1: 64 KB, direct mapped

DL1: 64 KB, direct mapped

UL2: 512 KB, 4-way set assoc

So…

Terrible locality (no surprise, 

graph search + huge datasets)

Load dominated (no surprise, 

reads a lot, computes a little)

Not an insignificant footprint

42 MB186 MB24 MB64 MB

Memory Footprint

0.300.030.060.48L2

0.030.020.020.04 DL1

Cache Miss Rates

0.020.080.070.025

Branch Misprediction Rates

0.120.170.20.14Branch’s

0.080.090.150.05Stores

0.270.20.250.27Loads

Instruction Mixes

0.71.050.290.69IPC

23 B15 B55B53 TCycles

EquakeGzipGcc
SPHINX 

3.0
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A Silicon Architecture:  Big Picture

Acoustic
Frontend

Gaussian
Scoring

Backend
Search

KB KB
MBs SRAM

(active recog)
SRAM
(constants)

SRAM
(communic)

10-100MB 
DRAM

(constants)

10-100MB 
DRAM

(models &
active recog)

Computations (Ops) Low High Medium

SRAM (size) Small Small Large

DRAM (size) -- Medium/Large Large

DRAM (bandwidth) -- High High
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Essential Implementation Ideas

Custom precision, everywhere

Every bit counts, no extras, no floating point – all fixed point

(Almost) no caching

Like graphics chips:  fetch from SDRAM, do careful data placement

(Little bit of caching for bandwidth filtering on big language models)

Aggressive pipelining

If we can possibly overlap computations – we try to do so

Algorithm transformation

Some software computations are just bad news for hardware

Substitute some “deep computation” with hardware-friendly versions
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Example:   Aggressive Pipelining

timeFetch HMM/

Viterbi
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Fetch Word

Fetch HMM/
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Fetch Word Language Model
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Viterbi

Transition/

Prune/Writeback
Fetch Word

Fetch HMM/

Viterbi

Transition/

Prune/Writeback

Pipelined Get-HMM/Viterbi and Transition stages

Pipelined Get-Word and Get-HMM stages

Pipelined non-LanguageModel and LanguageModel stages

Word #1

Word #2

HMM #1

HMM #2

HMM #3
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Example:  Algorithmic Changes

Acoustic-level pruning threshold

Software:  Use best score of current frame (after Viterbi on Active HMMs) 

Silicon:  Use best score of previous frame (nixes big temporal bottleneck) 

Tradeoffs

Less memory bandwidth,  can pipeline, little pessimistic on scores

Sphinx 3.0 Silicon

Initialize Frame

Fetch Active Word

Fetch Active HMM

Viterbi

Transition/Prune/Writeback

Language
Model

Start Frame

Done

Initialize Frame

Fetch Active Word

Fetch Active HMM

Viterbi

Transition/Prune/Writeback

Language
Model

Start Frame

DoneFetch Active Word

Fetch Active HMM

Viterbi

Writeback HMM Transition/Prune/Writeback

Language Model

Initialize Frame

Fetch Active Word

Fetch Active HMM

Done

Done all Active HMM

Done all Active HMM

Fetch Active Word

Fetch Active HMM

Viterbi

Writeback HMM Transition/Prune/Writeback

Language Model

Initialize Frame

Fetch Active Word

Fetch Active HMM

Done

Done all Active HMM

Done all Active HMM



© Rob A. Rutenbar 2006 Slide 22

Predicted Performance:  C++ Cycle Simulator

Benchmark:  5K-word “Wall Street Journal” task

Results:   

No accuracy loss;   not quite 2X @ 125MHz ASIC clock

Backend search needs:  ~1.5MB SRAM, ~30MB DRAM

1.67X

0.59X

1.05X

0.82X

0.74X

Speedup Over 

Real Time

(bigger is better)

0.125 GHz

2.8 GHz

1 GHz

1 GHz

1 GHz

Clock 

(GHz)

6.707%Software: Sphinx 3.0 (single CPU)

6.725%Hardware: Our Proposed Recognizer

6.97%Software: Sphinx 4 (single CPU)

6.97%Software: Sphinx 4 (dual CPU)

7.32%Software: Sphinx 3.3 (fast decoder)

Word Error 

Rate (%)
Recognizer Engine 
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Aside:   Bit-Level Verification Hurts  (A Lot)

We have newfound sympathy for others doing 
silicon designs that handle large media streams

Generating these sort of tradeoff curves:  CPU days weeks

0

1

2

3

4

5

6

7

0 500 1000 1500

S
p

e
e

d
u

p

Speedup vs Software (over 330 WSJ utterances)

Time (10ms frames)

All SRAM

1.5MB SRAM + 30MB DRAM

SPHINX 3.0 software

ALL DRAM



© Rob A. Rutenbar 2006 Slide 24

A Complete Live Recognizer:  FPGA Demo

In any “system design” research, 
you reach a point where you just 
want to see it work – for real

Goal: Full recognizer 1 FPGA + 1 DRAM

A benchmark that fits on chip

1000-word “Resource Mgt” task 

Slightly simplified:  no tri-grams

Slower:  not real time, ~2.3X slower

Resource limited:  slices, mem bandwidth
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Xilinx XC2VP30 FPGA 

[13969 slices / 2448 Kb] 
Utiliz:  99% of slices 
45% of Block RAM
~3MB DDR DRAM

50MHz clk;  ~200Mb/s IO

Xilinx XC2VP30 FPGA 

[13969 slices / 2448 Kb] 
Utiliz:  99% of slices 
45% of Block RAM
~3MB DDR DRAM

50MHz clk;  ~200Mb/s IO
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FPGA Experimental Results

Aside:   as far as we know, this is the most complex recognizer 
architecture ever fully mapped into a hardware-only form 
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Summary

Software is too constraining for speech recognition

Evolution of graphics chips suggests alternative:   Do it in silicon

Compelling performance and power reasons for silicon speech recog

Several “in silico vox” architectures in design

ASIC version:   ~1.6X realtime for 5K-word task;  10X version in progress

FPGA version:  tiny design successfully running 1000-word benchmark

Directions

Exploit Berkeley BEE2 emulation engine :   ~25X more FPGA resources

Detailed architecture/performance/power tradeoffs for mobile apps
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