
© R.A. Rutenbar 2006

In Silico Vox:

Towards Speech Recognition in Silicon

In Silico Vox:

Towards Speech Recognition in Silicon

Edward C. Lin, Kai Yu, Rob A. Rutenbar, Tsuhan Chen

Electrical & Computer Engineering

{eclin, kaiy, rutenbar, tsuhan}@ece.cmu.edu

© Rob A. Rutenbar 2006 Slide 2

Speech Recognition Today

Quality = OK Vocab = large

Quality = poor Vocab = small

Commonality: all software apps

© Rob A. Rutenbar 2006 Slide 3

Today’s Best Software Speech Recognizers

Best-quality recognition is computationally hard

For speaker-independent, large-vocabulary, continuous speech

1-10-100-1000 rule

For ~1X real-time recognition rate

For ~10% word error rate (90% accuracy)

Need ~100 MB memory footprint

Need ~100 W power

Need ~1000 MHz CPU

This proves to be very limiting …

© Rob A. Rutenbar 2006 Slide 4

The Carnegie Mellon In Silico Vox Project

The thesis: It’s time to liberate speech recognition
from the unreasonable limitations of software

The solution: Speech recognition in silicon

Why…?

Tomorrow’s compelling apps need 100X – 1000X performance

improvements to accomplish. (Not going to happen in software)

We have some successful historical examples of this migration

© Rob A. Rutenbar 2006 Slide 5

History: Graphics Engines

Nobody paints pixels in software anymore!

Too limiting in max performance. Too inefficient in power.

http://www.nvidia.com

http://www.mtekvision.com

True on the desktop (& laptop) …and on your cellphone too

© Rob A. Rutenbar 2006 Slide 6

Next-Gen Compelling Applications

Audio-mining

Very fast recognizers –
much faster than realtime

App: search large media
streams (DVD) quickly

Hands-free appliances

Very portable recognizers –
high quality result on << 1 watt

App: interfaces to small
devices, cellphone dictation

Terminator 2

FIND: “Hasta la vista, baby!”

“send email
to arnold –
let’s do lunch…”

© Rob A. Rutenbar 2006 Slide 7

Our Focus: How to Get to Fast…

Audio-mining

Very fast recognizers –
much faster than realtime

App: search large media
streams (DVD) quickly

Hands-free appliances

Very portable recognizers –
high quality result on << 1 watt

App: interfaces to small
devices, cellphone dictation

Terminator 2

FIND: “Hasta la vista, baby!”

“send email
to arnold –
let’s do lunch…”

© Rob A. Rutenbar 2006 Slide 8

About This Talk

The $2 tour: How speech recognition works

What happens in a recognizer

An ASIC architecture

Stripping away all CPU stuff we don’t need, focus on essentials

Results

ASIC version: Cycle simulator results

FPGA version: Live, running hardware-based recognizer

© Rob A. Rutenbar 2006 Slide 9

How Speech Recognition Works

ADCADC

Filter1

Filter2

Filter3

FilterN

.

.

.

Filter1

Filter2

Filter3

FilterN

.

.

.

x1

x2

x3

.

.

.

xn

x1

x2

x3

.

.

.

xnSampling

Feature

extraction
Feature
vector

DSP

ωω

1

a11

a12

b1(.)

2

a22

a23

b2(.)

3

a33

a34

b3(.)

1

a11

a12

b1(.)

1

a11

a12

b1(.)

2

a22

a23

b2(.)

2

a22

a23

b2(.)

3

a33

a34

b3(.)

3

a33

a34

b3(.)

Acoustic

“Rob”

Adaptation

HMM

Search

Word
...

Rob R AO B

Bob B AO B

...

Language

Rob says

Adaptation

Acoustic units Words Language

Adaptation to

environment/speaker

“ao”

Feature

Scoring

Acoustic

Frontend

Scoring Backend

Search

HMM / Viterbi Search

Language Model Search

© Rob A. Rutenbar 2006 Slide 10

(1) Acoustic Frontend

0 0.2 0.4 0.6 0.8 1 1.2

0

2

4

6

8

10

12

The frontend is all DSP. A discrete Fourier

transform (DFT) gives us the spectra. We

combine and logarithmically transform spectra

in ways motivated by physiology of human ears.

time

Frame

Combine these with

estimates of 1st and 2nd

time derivatives

Color is “how much energy”.

in transformed spectra.

Green = low, red = high.

This pic is across a

few sec of speech.

Color is “how much energy”.

in transformed spectra.

Green = low, red = high.

This pic is across a

few sec of speech.

ADCADC

Filter1

Filter2

Filter3

FilterN

.

.

.

Filter1

Filter2

Filter3

FilterN

.

.

.

x1

x2

x3

.

.

.

xn

x1

x2

x3

.

.

.

xnSampling

Extraction Feature
vector

DSP

ωω

AdaptationAdaptation

Feature

© Rob A. Rutenbar 2006 Slide 11

Each feature is a point in high-dimensional space

Each “atomic sound” is a region of this space

Score each atomic sound with Probability(sound matches feature)

Note: (sounds) X (dimensions) X (Gaussians) = BIG

(2) Scoring Stage

Feature

Each sound is a

Gaussian Mixture

Feature Vector

X=(x1, x2, …, xn)

2

1
)(

7

0

2

)(

2,

2
,

2
,

i

x

i

iss ewxSCORE
is

is

=

−−

= ∑
πΛ

σ

µ39

1j=
∑ j

1
)(

7

0

2

)(

2,

2
,

2
,

i

x

i

iss ewxSCORE
is

is

=

−−

= ∑
πΛ

σ

µ39

1j=
∑ j

Each sound approximated as a set

of high-dim Gaussian densities

© Rob A. Rutenbar 2006 Slide 12

(3) Search: Speech Models are Layered Models

YES

NO

/Y/ /EH/ /S/

/N/ /OW/

Waveform

Pitch

Power

Spectrum

15 ms

0 ms

0 kHz

0 dB

6 kHz

80 dB

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Language X Words X Acoustic Layered Search

words “acoustic

units”

1 frame of

sampled sound

“sub-acoustic

units”

Classical methods

(HMMs, Viterbi)

and idiosyncracies

© Rob A. Rutenbar 2006 Slide 13

Context Matters: At Bottom -- Triphones

English has ~50 atomic sounds (phones) but we
recognize ~50x50x50 context-dependent triphones

Because “AY” sound in “five” is different than the “AY” in “nine”

Five F(-,AY)cross-word AY(F,V)word-internal V(AY,-)cross-word

Nine N(-,AY)cross-word AY(N,N)word-internal N(AY,-)cross-word

“AY” in “five” != “AY” in “nine”

© Rob A. Rutenbar 2006 Slide 14

Similar Idea at Top: N-gram Language Model

Unigram

Trigram

Bigram

W13W123

…
W122

W111

W112

W113

W114

W121

…

W11

W12

W13

W14

W1

W2

W3

W4

termination

Lets us calculate

likelihood of

word W3
after W2
after W1

Suppose we have vocabulary

{ W1, W2, W3, W4, …}

“W1” “W1 W2”

“W1 W2 W3”

© Rob A. Rutenbar 2006 Slide 15

Good Speech Models are BIG

This is ~64K word “Broadcast News” task

Unfortunately, many idiosyncratic
details in how layers of model traversed

Waveform

Pitch

Power

Spectrum

15 ms

0 ms

0 kHz

0 dB

6 kHz

80 dB

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

for each 10 ms time frame

5156

Scores

111,593

Triphone

HMMs

64,001

Unigrams

9,382,014

Bigram
13,459,879

Trigram

.

.

.
.
.
. .

.

.

.

.

.

.

.

.

© Rob A. Rutenbar 2006 Slide 16

19%

6% 15%

27%

33%

ADCADC

Filter1

Filter2

Filter3

FilterN

.

.

.

Filter1

Filter2

Filter3

FilterN

.

.

.

x1

x2

x3

.

.

.

xn

x1

x2

x3

.

.

.

xnSampling

Feature

extraction
Feature
vector

DSP

ωωωω

1

a
11

a
12

b1(.)

2

a
22

a
23

b2(.)

3

a
33

a
34

b3(.)

1

a
11

a
12

b1(.)

1

a
11

a
12

b1(.)

2

a
22

a
23

b2(.)

2

a
22

a
23

b2(.)

3

a
33

a
34

b3(.)

3

a
33

a
34

b3(.)

1

a
11

a
12

b1(.)

1

a
11

a
12

b1(.)

2

a
22

a
23

b2(.)

2

a
22

a
23

b2(.)

3

a
33

a
34

b3(.)

3

a
33

a
34

b3(.)

1

a
11

a
12

b1(.)

1

a
11

a
12

b1(.)

2

a
22

a
23

b2(.)

2

a
22

a
23

b2(.)

3

a
33

a
34

b3(.)

3

a
33

a
34

b3(.)

2

a
22

a
23

b2(.)

2

a
22

a
23

b2(.)

3

a
33

a
34

b3(.)

3

a
33

a
34

b3(.)

3

a
33

a
34

b3(.)

3

a
33

a
34

b3(.)

Acoustic

“Rob”

Adaptation

HMM

Search

Word
...

Rob R AO B

Bob B AO B
...

Language

Rob says

Adaptation

Acoustic units Words Language

Adaptation to

environment/speaker

“ao”

Feature

Scoring

HMM / Viterbi Search

Language Model Search

Where Does Software Spend its Time?

CPU time for CMU Sphinx 3.0

Prior studies targeted less capable
versions (v1, v2)

SimpleScalar & Intel Vtune

64K-word “Broadcast News” benchmark

So: It’s all backend

~0% of time!

© Rob A. Rutenbar 2006 Slide 17

Memory Usage? SPHINX 3.0 vs Spec CPU2000

Cache sizes

L1: 64 KB, direct mapped

DL1: 64 KB, direct mapped

UL2: 512 KB, 4-way set assoc

So…

Terrible locality (no surprise,

graph search + huge datasets)

Load dominated (no surprise,

reads a lot, computes a little)

Not an insignificant footprint

42 MB186 MB24 MB64 MB

Memory Footprint

0.300.030.060.48L2

0.030.020.020.04 DL1

Cache Miss Rates

0.020.080.070.025

Branch Misprediction Rates

0.120.170.20.14Branch’s

0.080.090.150.05Stores

0.270.20.250.27Loads

Instruction Mixes

0.71.050.290.69IPC

23 B15 B55B53 TCycles

EquakeGzipGcc
SPHINX

3.0

© Rob A. Rutenbar 2006 Slide 18

A Silicon Architecture: Big Picture

Acoustic
Frontend

Gaussian
Scoring

Backend
Search

KB KB
MBs SRAM

(active recog)
SRAM
(constants)

SRAM
(communic)

10-100MB
DRAM

(constants)

10-100MB
DRAM

(models &
active recog)

Computations (Ops) Low High Medium

SRAM (size) Small Small Large

DRAM (size) -- Medium/Large Large

DRAM (bandwidth) -- High High

© Rob A. Rutenbar 2006 Slide 19

Essential Implementation Ideas

Custom precision, everywhere

Every bit counts, no extras, no floating point – all fixed point

(Almost) no caching

Like graphics chips: fetch from SDRAM, do careful data placement

(Little bit of caching for bandwidth filtering on big language models)

Aggressive pipelining

If we can possibly overlap computations – we try to do so

Algorithm transformation

Some software computations are just bad news for hardware

Substitute some “deep computation” with hardware-friendly versions

© Rob A. Rutenbar 2006 Slide 20

Example: Aggressive Pipelining

timeFetch HMM/

Viterbi

Transition/

Prune/Writeback
Fetch Word

Fetch HMM/

Viterbi

Transition/

Prune/Writeback
Language Model

Fetch HMM/

Viterbi

Transition/

Prune/Writeback
Fetch Word

Fetch HMM/

Viterbi

Transition/

Prune/Writeback

Language Model

Fetch Word Language Model

Fetch HMM/

Viterbi

Transition/

Prune/Writeback
Fetch Word

Fetch HMM/

Viterbi

Transition/

Prune/Writeback
Fetch Word

Fetch HMM/

Viterbi

Transition/

Prune/Writeback

Pipelined Get-HMM/Viterbi and Transition stages

Pipelined Get-Word and Get-HMM stages

Pipelined non-LanguageModel and LanguageModel stages

Word #1

Word #2

HMM #1

HMM #2

HMM #3

© Rob A. Rutenbar 2006 Slide 21

Example: Algorithmic Changes

Acoustic-level pruning threshold

Software: Use best score of current frame (after Viterbi on Active HMMs)

Silicon: Use best score of previous frame (nixes big temporal bottleneck)

Tradeoffs

Less memory bandwidth, can pipeline, little pessimistic on scores

Sphinx 3.0 Silicon

Initialize Frame

Fetch Active Word

Fetch Active HMM

Viterbi

Transition/Prune/Writeback

Language
Model

Start Frame

Done

Initialize Frame

Fetch Active Word

Fetch Active HMM

Viterbi

Transition/Prune/Writeback

Language
Model

Start Frame

DoneFetch Active Word

Fetch Active HMM

Viterbi

Writeback HMM Transition/Prune/Writeback

Language Model

Initialize Frame

Fetch Active Word

Fetch Active HMM

Done

Done all Active HMM

Done all Active HMM

Fetch Active Word

Fetch Active HMM

Viterbi

Writeback HMM Transition/Prune/Writeback

Language Model

Initialize Frame

Fetch Active Word

Fetch Active HMM

Done

Done all Active HMM

Done all Active HMM

© Rob A. Rutenbar 2006 Slide 22

Predicted Performance: C++ Cycle Simulator

Benchmark: 5K-word “Wall Street Journal” task

Results:

No accuracy loss; not quite 2X @ 125MHz ASIC clock

Backend search needs: ~1.5MB SRAM, ~30MB DRAM

1.67X

0.59X

1.05X

0.82X

0.74X

Speedup Over

Real Time

(bigger is better)

0.125 GHz

2.8 GHz

1 GHz

1 GHz

1 GHz

Clock

(GHz)

6.707%Software: Sphinx 3.0 (single CPU)

6.725%Hardware: Our Proposed Recognizer

6.97%Software: Sphinx 4 (single CPU)

6.97%Software: Sphinx 4 (dual CPU)

7.32%Software: Sphinx 3.3 (fast decoder)

Word Error

Rate (%)
Recognizer Engine

© Rob A. Rutenbar 2006 Slide 23

Aside: Bit-Level Verification Hurts (A Lot)

We have newfound sympathy for others doing
silicon designs that handle large media streams

Generating these sort of tradeoff curves: CPU days weeks

0

1

2

3

4

5

6

7

0 500 1000 1500

S
p

e
e

d
u

p

Speedup vs Software (over 330 WSJ utterances)

Time (10ms frames)

All SRAM

1.5MB SRAM + 30MB DRAM

SPHINX 3.0 software

ALL DRAM

© Rob A. Rutenbar 2006 Slide 24

A Complete Live Recognizer: FPGA Demo

In any “system design” research,
you reach a point where you just
want to see it work – for real

Goal: Full recognizer 1 FPGA + 1 DRAM

A benchmark that fits on chip

1000-word “Resource Mgt” task

Slightly simplified: no tri-grams

Slower: not real time, ~2.3X slower

Resource limited: slices, mem bandwidth

ADCADC

Filter1

Filter2

Filter3

FilterN

.

.

.

Filter1

Filter2

Filter3

FilterN

.

.

.

x1

x2

x3

.

.

.

xn

x1

x2

x3

.

.

.

xnSampling

Feature

extraction
Feature
vector

DSP

ωωωω

1

a
11

a
12

b1(.)

2

a
22

a
23

b2(.)

3

a
33

a
34

b3(.)

1

a
11

a
12

b1(.)

1

a
11

a
12

b1(.)

2

a
22

a
23

b2(.)

2

a
22

a
23

b2(.)

3

a
33

a
34

b3(.)

3

a
33

a
34

b3(.)

1

a
11

a
12

b1(.)

1

a
11

a
12

b1(.)

2

a
22

a
23

b2(.)

2

a
22

a
23

b2(.)

3

a
33

a
34

b3(.)

3

a
33

a
34

b3(.)

1

a
11

a
12

b1(.)

1

a
11

a
12

b1(.)

2

a
22

a
23

b2(.)

2

a
22

a
23

b2(.)

3

a
33

a
34

b3(.)

3

a
33

a
34

b3(.)

2

a
22

a
23

b2(.)

2

a
22

a
23

b2(.)

3

a
33

a
34

b3(.)

3

a
33

a
34

b3(.)

3

a
33

a
34

b3(.)

3

a
33

a
34

b3(.)

Acoustic

“Rob”

Adaptation

HMM

Search

Word
...

Rob R AO B

Bob B AO B
...

Language

Rob says

Adaptation

Acoustic units Words Language

Adaptation to

environment/speaker

“ao”

Feature

Scoring

HMM / Viterbi Search

Language Model Search

Xilinx XC2VP30 FPGA

[13969 slices / 2448 Kb]
Utiliz: 99% of slices
45% of Block RAM
~3MB DDR DRAM

50MHz clk; ~200Mb/s IO

Xilinx XC2VP30 FPGA

[13969 slices / 2448 Kb]
Utiliz: 99% of slices
45% of Block RAM
~3MB DDR DRAM

50MHz clk; ~200Mb/s IO

© Rob A. Rutenbar 2006 Slide 25

FPGA Experimental Results

Aside: as far as we know, this is the most complex recognizer
architecture ever fully mapped into a hardware-only form

© Rob A. Rutenbar 2006 Slide 26

Summary

Software is too constraining for speech recognition

Evolution of graphics chips suggests alternative: Do it in silicon

Compelling performance and power reasons for silicon speech recog

Several “in silico vox” architectures in design

ASIC version: ~1.6X realtime for 5K-word task; 10X version in progress

FPGA version: tiny design successfully running 1000-word benchmark

Directions

Exploit Berkeley BEE2 emulation engine : ~25X more FPGA resources

Detailed architecture/performance/power tradeoffs for mobile apps

© Rob A. Rutenbar 2006 Slide 27

Acknowledgements

Work supported by

National Science Foundation

Semiconductor Research Corporation

MARCO/DARPA Center for Circuit & System Solutions (C2S2)

We are grateful for the advice and speech
recognition expertise shared with us by

Richard M. Stern, CMU

Arthur Chan, CMU

