

In Silico Vox: Towards Speech Recognition in Silicon

Edward C. Lin, Kai Yu, Rob A. Rutenbar, Tsuhan Chen Electrical & Computer Engineering {eclin, kaiy, rutenbar, tsuhan}@ece.cmu.edu

Carnegie Mellon

© R.A. Rutenbar 2006

Speech Recognition Today

Commonality: all software apps

Today's Best Software Speech Recognizers

Best-quality recognition is computationally hard

For speaker-independent, large-vocabulary, continuous speech

1-10-100-1000 rule

- ▼ For ~1X real-time recognition rate
- ▼ For **~10%** word error rate (90% accuracy)
- Need ~100 MB memory footprint
- Need ~100 W power
- Need ~1000 MHz CPU

This proves to be very *limiting* …

The Carnegie Mellon In Silico Vox Project

- The thesis: It's time to liberate speech recognition from the unreasonable limitations of software
- The solution: Speech recognition in silicon
- Why...?
 - Tomorrow's compelling apps need 100X 1000X performance improvements to accomplish. (Not going to happen in software)

■ We have some successful historical examples of this migration

History: Graphics Engines

Nobody paints pixels in software anymore!

Too limiting in max performance. Too inefficient in power.

http://www.nvidia.com

...and on your cellphone too

http://www.mtekvision.com

Next-Gen Compelling Applications

Audio-mining

- Very fast recognizers much faster than realtime
- App: search large media streams (DVD) quickly

FIND: "Hasta la vista, baby!"

Hands-free appliances

- Very portable recognizers high quality result on << 1 watt</p>
- App: interfaces to small devices, cellphone dictation

Our Focus: How to Get to Fast...

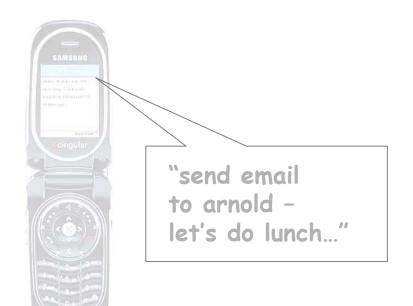
Audio-mining

- Very fast recognizers much faster than realtime
- App: search large media streams (DVD) quickly

FIND: "Hasta la vista, baby!"

Hands-free appliances

- Very portable recognizers high quality result on << 1 watt</p>
- App: interfaces to small devices, cellphone dictation



About This Talk

The \$2 tour: How speech recognition works

What happens in a recognizer

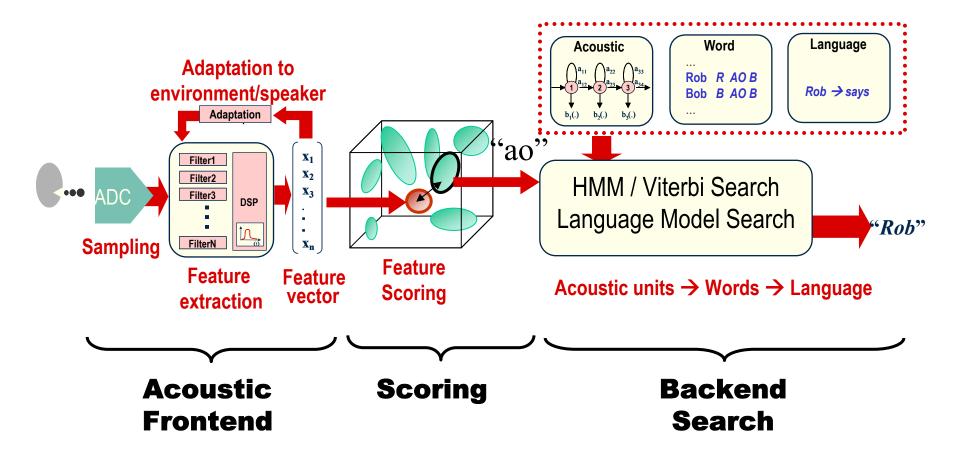
An ASIC architecture

Stripping away all CPU stuff we don't need, focus on essentials

Results

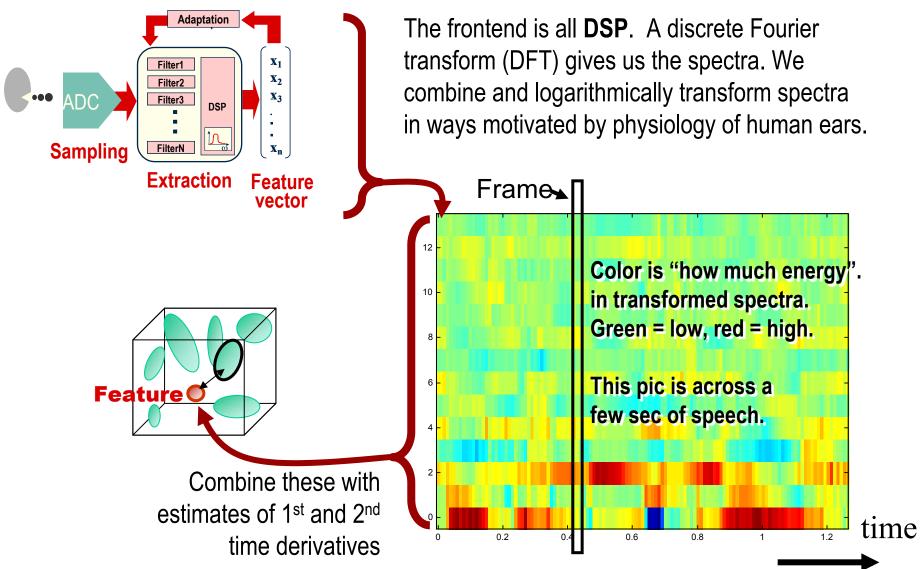
- ◄ ASIC version: Cycle simulator results
- **FPGA** version: Live, running hardware-based recognizer

How Speech Recognition Works



Slide 10

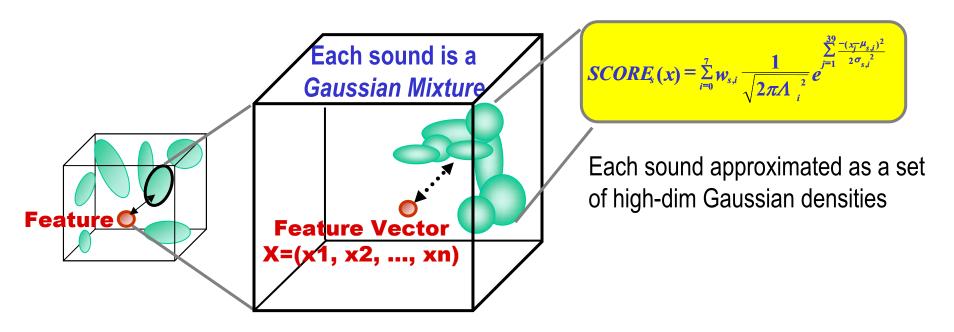
(1) Acoustic Frontend



(2) Scoring Stage

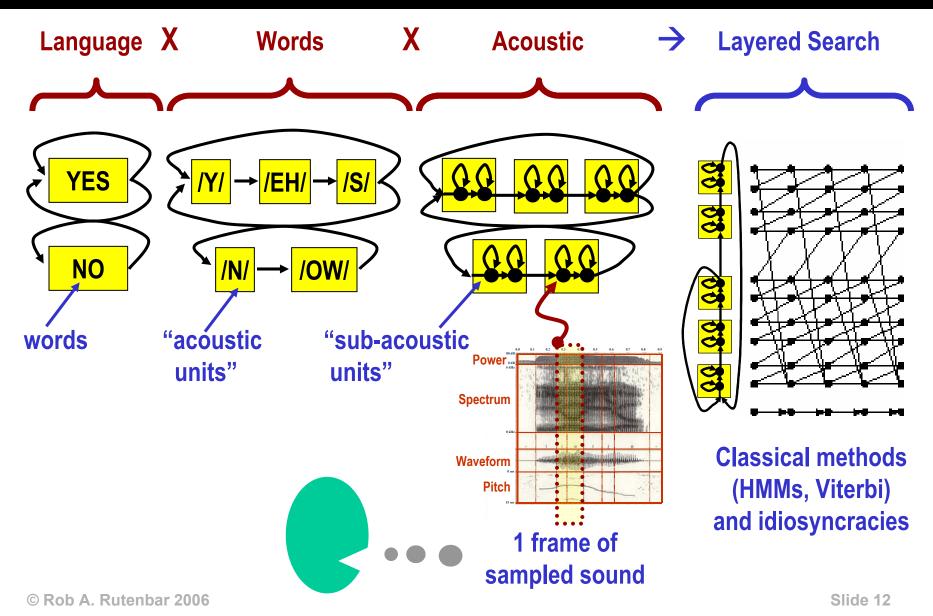
Each feature is a point in high-dimensional space

- Each "atomic sound" is a region of this space
- Score each atomic sound with Probability(sound matches feature)



Note: (sounds) X (dimensions) X (Gaussians) = BIG

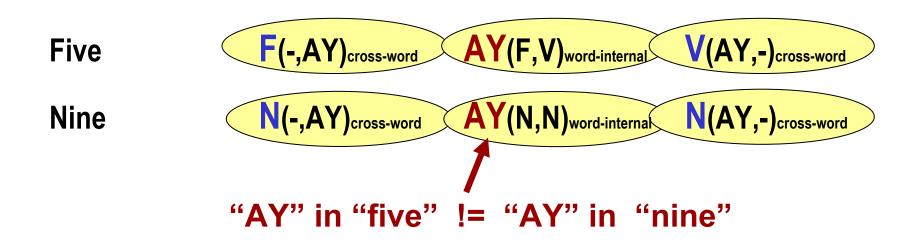
(3) Search: Speech Models are Layered Models



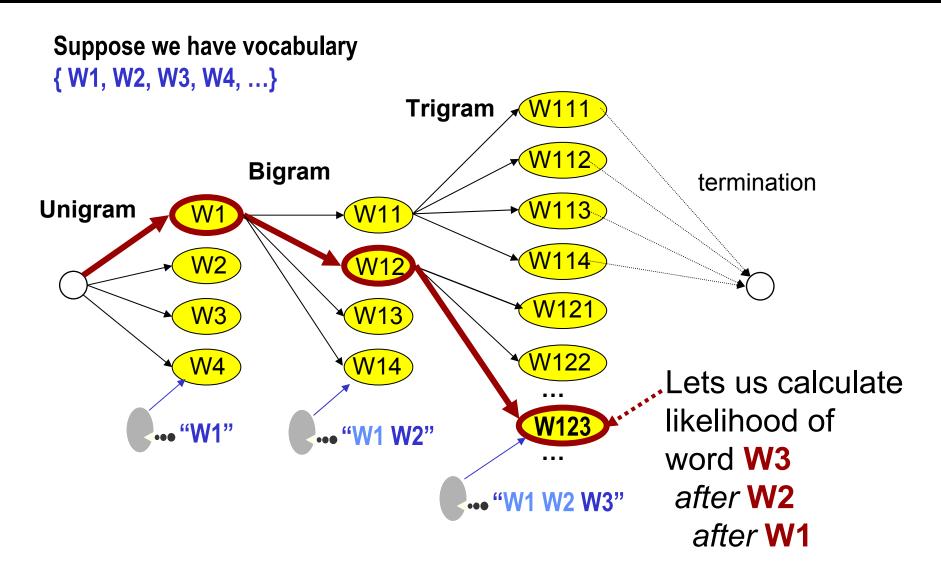
Context Matters: At Bottom -- Triphones

English has ~50 atomic sounds (phones) but we recognize ~50x50x50 context-dependent triphones

Because "AY" sound in "five" is different than the "AY" in "nine"

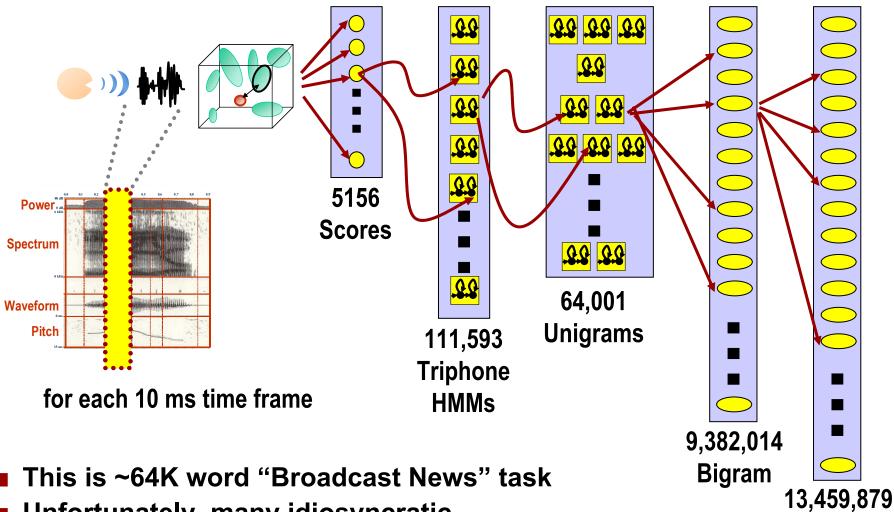


Similar Idea at Top: *N-gram* Language Model



Trigram

Good Speech Models are BIG



Unfortunately, many idiosyncratic details in how layers of model traversed

6%

19%

15%

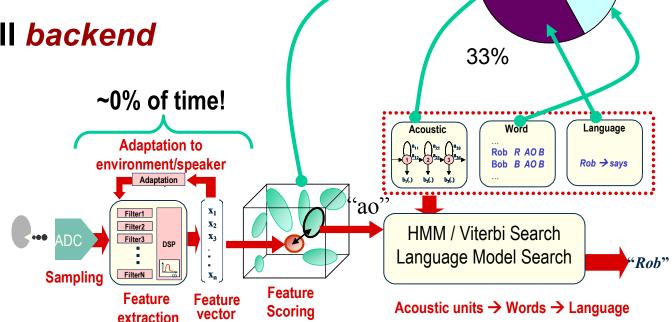
27%

Where Does Software Spend its Time?

CPU time for CMU Sphinx 3.0

- Prior studies targeted less capable versions (v1, v2)
- SimpleScalar & Intel Vtune
- 64K-word "Broadcast News" benchmark

So: It's all backend



Memory Usage? SPHINX 3.0 vs Spec CPU2000

Cache sizes

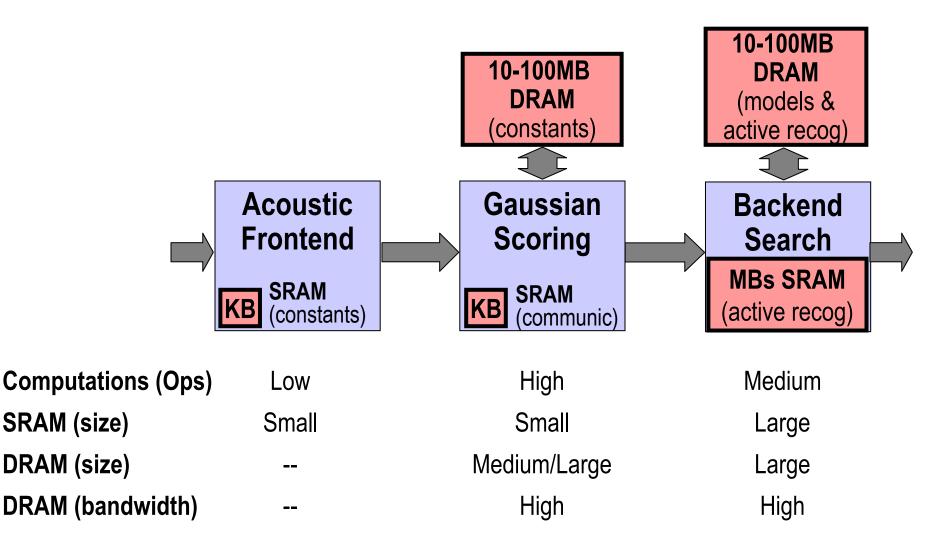
- ◄ L1: 64 KB, direct mapped
- DL1: 64 KB, direct mapped
- ▼ UL2: 512 KB, 4-way set assoc

So...

- Terrible locality (no surprise, graph search + huge datasets)
- Load dominated (no surprise, reads a lot, computes a little)
- Not an insignificant footprint

	SPHINX 3.0	Gcc	Gzip	Equake			
Cycles	53 T	55B	15 B	23 B			
IPC	0.69	0.29	1.05	0.7			
Instruction Mixes							
Loads	0.27	0.25	0.2	0.27			
Stores	0.05	0.15	0.09	0.08			
Branch's	0.14	0.2	0.17	0.12			
Branch Misprediction Rates							
	0.025	0.07	0.08	0.02			
Cache Miss Rates							
DL1	0.04	0.02	0.02	0.03			
L2	0.48	0.06	0.03	0.30			
Memory Footprint							
	64 MB	24 MB	186 MB	42 MB			

A Silicon Architecture: Big Picture



Essential Implementation Ideas

Custom precision, everywhere

Every bit counts, no extras, no floating point – all fixed point

(Almost) no caching

- Like graphics chips: fetch from SDRAM, do careful data placement
- (Little bit of caching for bandwidth filtering on big language models)

Aggressive pipelining

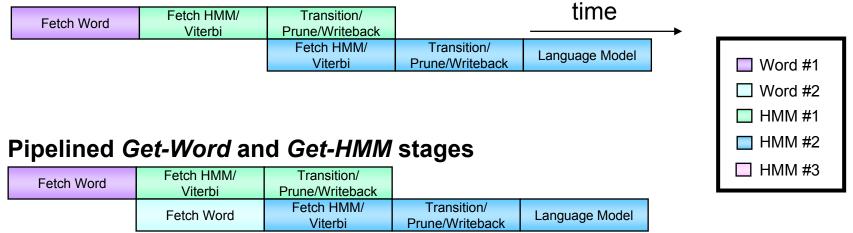
If we can possibly overlap computations – we try to do so

Algorithm transformation

- Some software computations are just bad news for hardware
- Substitute some "deep computation" with hardware-friendly versions

Example: Aggressive Pipelining

Pipelined Get-HMM/Viterbi and Transition stages



Pipelined non-LanguageModel and LanguageModel stages

Fetch Word	Fetch HMM/ Viterbi	Transition/ Prune/Writeback	Language Model		
	Fetch Word	Fetch HMM/ Viterbi	Transition/ Prune/Writeback		
			Fetch HMM/ Viterbi	Transition/ Prune/Writeback	

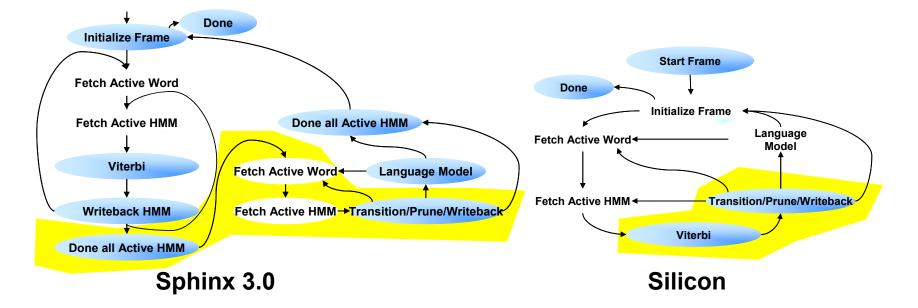
Example: Algorithmic Changes

Acoustic-level pruning threshold

- **Software**: Use best score of *current* frame (after Viterbi on Active HMMs)
- **Silicon**: Use best score of *previous* frame (nixes big temporal bottleneck)

Tradeoffs

Less memory bandwidth, can pipeline, little pessimistic on scores



Predicted Performance: C++ Cycle Simulator

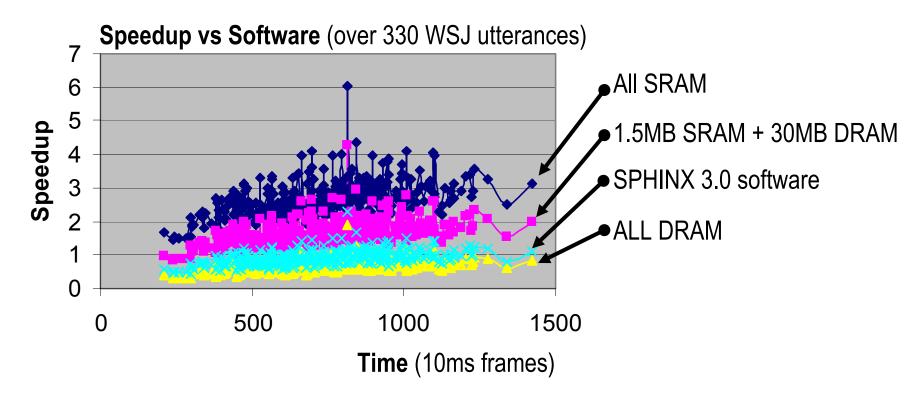
- Benchmark: 5K-word "Wall Street Journal" task THE WALL STREET JOURNAL
- **Results:**
 - **No** accuracy loss; not quite **2X** @ **125MHz** ASIC clock
 - Backend search needs: ~1.5MB SRAM, ~30MB DRAM

Recognizer Engine	Word Error Rate (%)	Clock (GHz)	Speedup Over Real Time (bigger is better)
Software: Sphinx 3.3 (fast decoder)	7.32%	1 GHz	0.74X
Software: Sphinx 4 (single CPU)	6.97%	1 GHz	0.82X
Software: Sphinx 4 (dual CPU)	6.97%	1 GHz	1.05X
Software: Sphinx 3.0 (single CPU)	6.707%	2.8 GHz	0.59X
Hardware: Our Proposed Recognizer	6.725%	0.125 GHz	1.67X

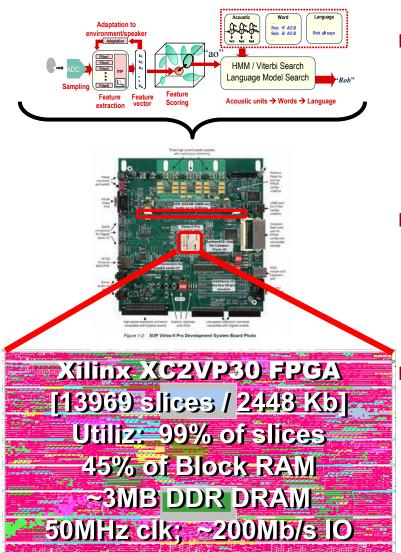
Aside: Bit-Level Verification Hurts (A Lot)

We have newfound sympathy for others doing silicon designs that handle large media streams

\checkmark Generating these sort of tradeoff curves: CPU days \rightarrow weeks



A Complete Live Recognizer: FPGA Demo



In any "system design" research, you reach a point where you just want to see it work – for real

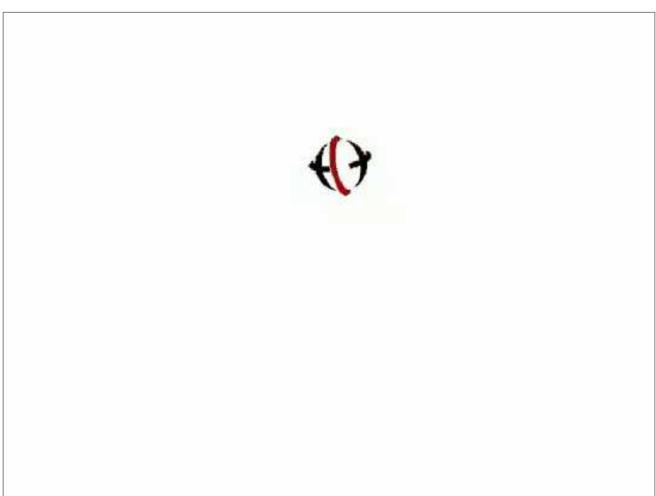
Goal: Full recognizer 1 FPGA + 1 DRAM

A benchmark that fits on chip

- 1000-word "Resource Mgt" task
- Slightly simplified: no tri-grams
- ◄ Slower: not real time, ~2.3X slower
- Resource limited: slices, mem bandwidth

FPGA Experimental Results

Aside: as far as we know, this is the most complex recognizer architecture ever fully mapped into a hardware-only form



Summary

Software is too constraining for speech recognition

- Evolution of graphics chips suggests alternative: Do it in silicon
- Compelling performance and power reasons for silicon speech recog

Several "in silico vox" architectures in design

ASIC version: ~1.6X realtime for 5K-word task; 10X version in progress
FPGA version: tiny design successfully running 1000-word benchmark

Directions

- Exploit Berkeley BEE2 emulation engine : ~25X more FPGA resources
- Detailed architecture/performance/power tradeoffs for mobile apps

WHEN IN WEREIGHEN AVAILABLE

Acknowledgements

Work supported by

- National Science Foundation
- Semiconductor Research Corporation
- MARCO/DARPA Center for Circuit & System Solutions (C2S2)

We are grateful for the advice and speech recognition expertise shared with us by

- Richard M. Stern, CMU
- Arthur Chan, CMU