Hot Chips-18

Design of a Reusable 1GHz, Superscalar ARM Processor

Stephen Hill

Consulting Engineer ARM - Austin Design Centre 22 August 2006

Outline

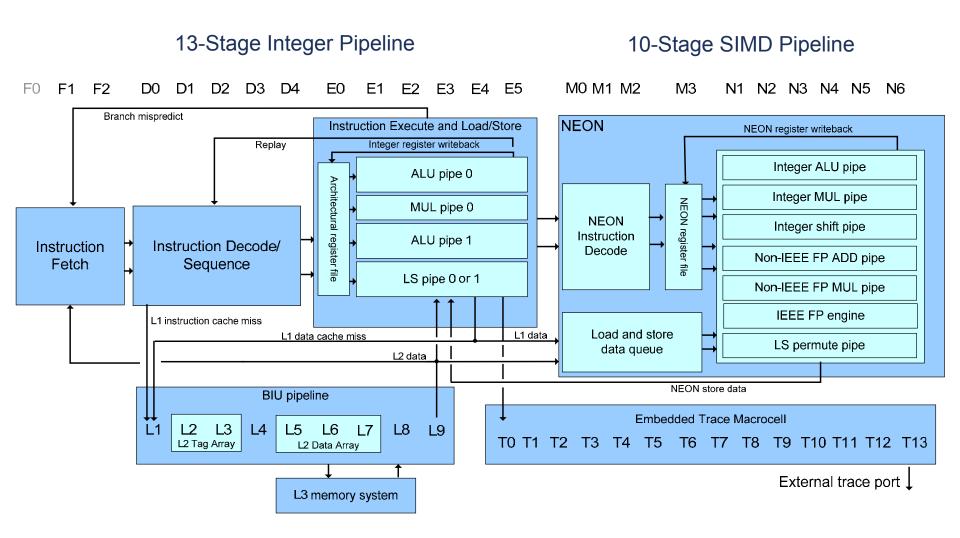
- Overview of Cortex[™]-A8 (Tiger) processor
- What is reusability or redeployability?
- Why is it important to the Cortex-A8 processor?
- Effects on design flow & microarchitecture
- Interaction of energy efficient & reusable design
- Summary

Cortex-A8 Microarchitecture Highlights

OKIA

Goals:

- A new level of performance from ARM
- Uphold core values of energy efficiency & flexibility
- Support both mobile and tethered applications


Microarchitecture:

- Dual issue superscalar
- In-order/statically scheduled
- 13-stage integer pipeline
- 10-stage int+float SIMD unit
- 2 level branch prediction
- 2x32/16/0K level-1 caches
- Integrated 0 to 2M level-2 cache

3

Cortex-A8 Processor Pipeline

4

Copyright© 2006 ARM Limited All rights reserved.

Reusability/Redeployability

What is it?

- Basics: Well commented RTL model, good documentation, system development models, software development models, test vectors...
- Microarchitecture: How well the microarchitecture can be usefully implemented in new EDA flows, cell libraries, processes and process generations... for a reasonable effort/cost

Why is it important?

- Economics of intellectual property
- Flexibility compensates for imperfect foresight
- Fabrication advances keep coming

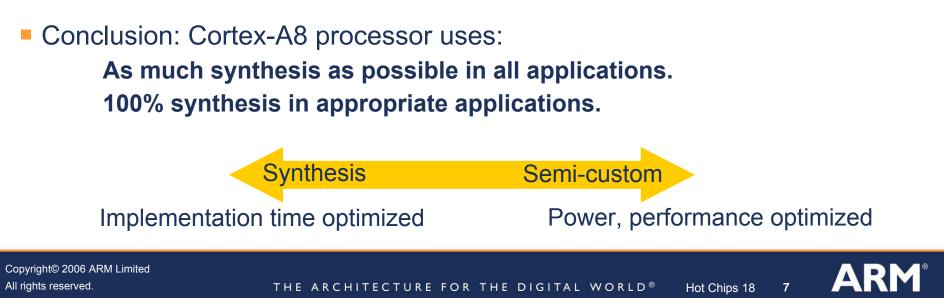
Some Factors Effecting Reusability

Reduced reusability	Improved reusability	ea for ss)	Economically
Microarchitecture reflects strengths and weaknesses of one process or circuit style	Microarchitecture avoids strong process ties	ance, ar possible y, proces	reusable range ↔ ∧
Non-standard logic style, dynamic logic, lots of CAMs and wide input gates	Standard complementary logic gates, RAMs and register files.	r, performan ive to best pc flow, library, l	
Mixed-edge or level sensitive clocking	Pos-edge triggered clocking	Power , (Relative given flo	
Home grown tools used extensively	Standard SOC EDA tools used by default. Home-grown tools are carefully managed	₽ £.₽	More aggressive flow, library, process
Non-synthesizable sections of hand-implemented code	100% synthesizable code. Non-synthesis implementation only where necessary		Improved reusability
Circuits & custom layout pushed to close timing and power	Timing and power fixes fed into microarchitecture and RTL		
Setup/hold timing verified for one process	Timing verified in a wide range of processes		More aggressive flow, library, process

Effects on Cortex-A8 Design Flow

Advanced

flows

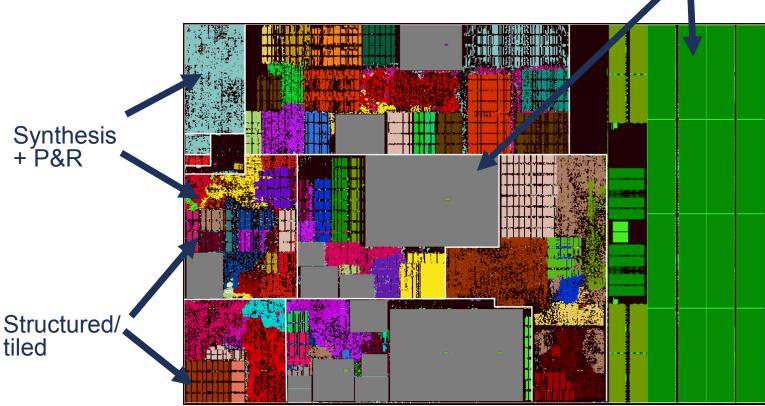

Performance

100%

flows

Synthesis

- Would like to use 100% synthesis and place route
 - Ideal for reusability
 - Allows fast spins of design during development
- Couldn't cover all corners of the Cortex-A8 performance-efficiency envelope
- Plan: deliver performance, power and area, targets while minimizing the additional effort required from the silicon partner to get their design to market

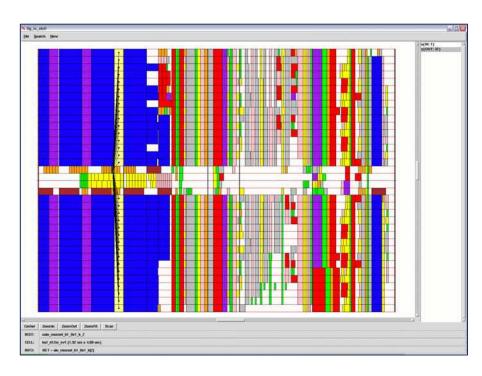

Implementation Regions

The Cortex-A8 processor is partitioned at the microarchitecture level into:

Custom

(RAM/Regfile)

- Synthesis: Non-critical areas
- Structured: Timing/Power critical areas
- Customs (with clean interfaces): RAM/Regfile



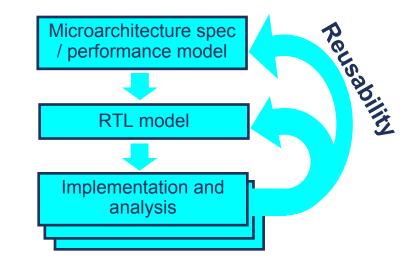
Copyright© 2006 ARM Limited All rights reserved.

Structured Regions

- "Structured" means:
 - Synthesizable RTL
 - Hand-mapped
 - Hand placed
 - Auto routed
- Best for regular datapath structures
- Critical routes:
 - Minimum length
 - Regular, predictable & repeatable
- Allowed safe use of restricted cells
- Relative placement was captured, not absolute coordinates
 - As physical factors become more important, EDA tools may need to evolve better ways to preserve the valuable IP content of designed placement

Results for Structured Implementation

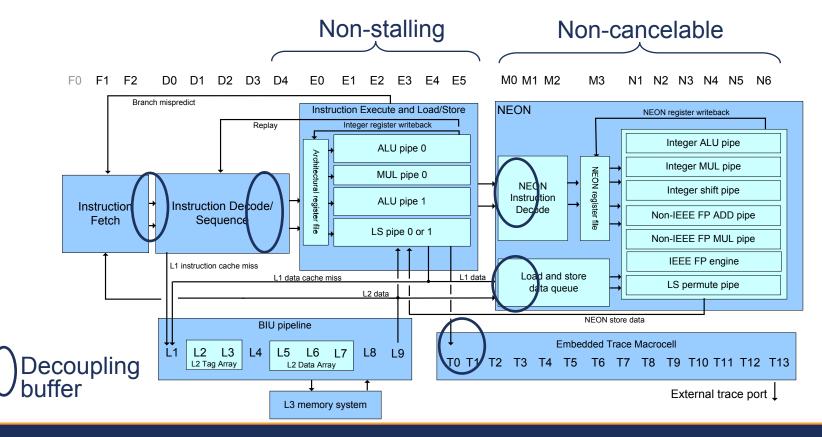
Results of detailed comparison of structured vs synthesis for one unit:


Structured vs. Synthesis	Structured Improvement	
Cycle time (nvt only)	18%	
Cycle time (mixed vt)	8%*	
Area	-5%	
Dynamic Power	6%	
Static Power	53%	
Cell Count	2%	

Gains most apparent only <u>after</u> RTL optimized from synthesis feedback *Synthesized had 27% LVT cells. Structured 0.7%

Developing a Reusable Microarchitecture

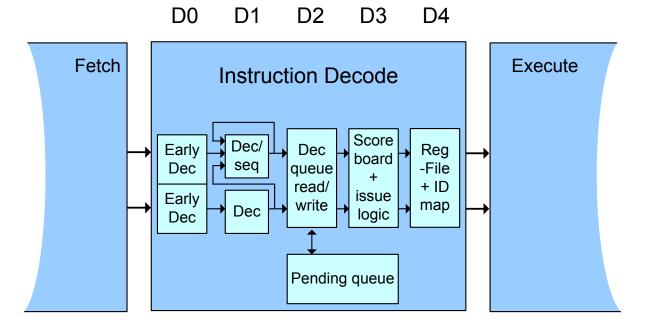
- IP partnership business model helps
 - Cortex-A8 microarchitecture got feedback from multiple implementation teams
- Reuse problems (mostly) dropped off quickly with additional implementations


- Timing and power problems fixed in microarchitecture/RTL
 - Performance modeling and microarchitecture/RTL teams stayed 100% assigned to project though tapeout
 - Re-pipelining or restructuring to fix a path for one implementation often helped the others (at least for power or area)

Effects of Reusability on Microarchitecture

Global, high-fanout stall signals were eliminated. Examples:

- Data and instruction decoupling queues exist at critical points in pipeline
- Non-stalling execute stages after D4
- Neon instructions cannot be cancelled or flushed after E5

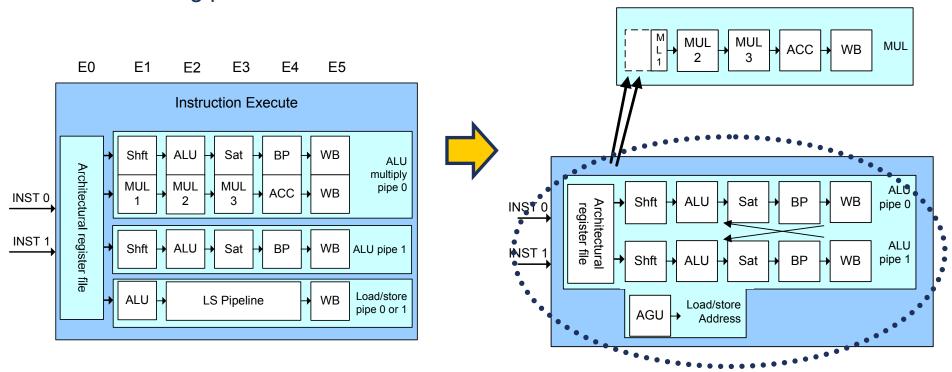


Copyright© 2006 ARM Limited All rights reserved.

Effects of Reusability on Microarchitecture

Non-critical areas pipelined for maximum synthesis+P&R even for high frequency implementations. Examples:

- Relatively relaxed pipelining of decode/sequencer stages:
 - Cost: 0.39% performance (made up in other areas)
 - Gain: Large chunk of random logic is very reusable
- ETM (Embedded Trace Macrocell[™])



Effects of Reusability on Microarchitecture

Critical areas *logically* clustered to allow effective *physical* clustering:

- Execute pipelines and forwarding clustered (Sparse first stage of multiplier allows removal from critical area)
- Scoreboard pulls together all pipeline hazard tracking and detection and forwarding path selection
 E0
 E1
 E2
 E3

14

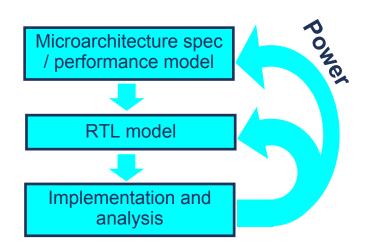
E4

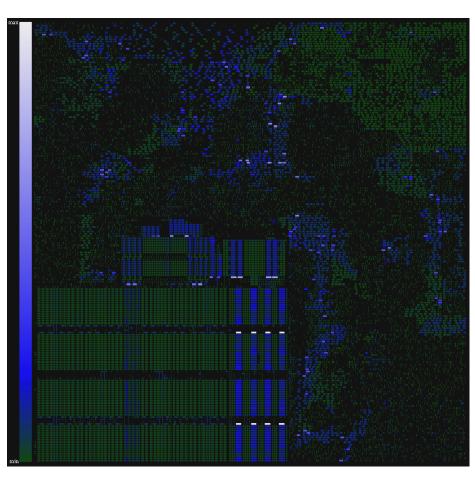
E5

Energy Efficient + Reusable Design

Most reusable power optimizations are in the microarchitecture or RTL:

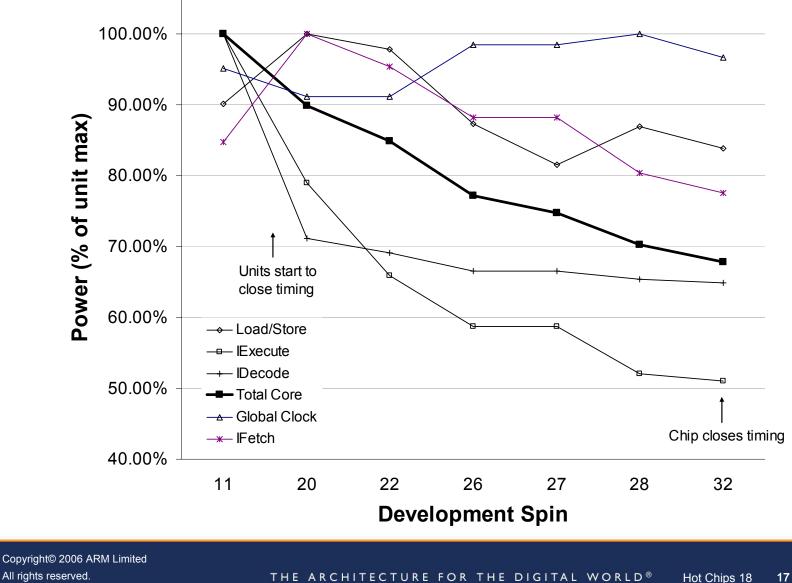
- Microarchitecture minimized complexity: in-order, statically scheduled
 - Simplest microarchitecture that delivered the required performance
 - Simplicity helped reuse and power
 - Minimized reliance on: CAMs & dynamic logic i.e. minimized associative searches and wide gates
 - Minimized speculation
 - Reduced energy wasted producing unused results
 - Many power optimizations arose from predictability of pipeline


Clock gating


- 3 levels: Architectural, Regional (optional) and Local
- >94% flip-flops locally gated
- Minimized frequency of accesses to wide or deep structures
- Optimizing common cases to use least power

Power Optimization in Design Flow

- Cortex-A8 design flow placed power in inner-loop of design flow
- Allowed tradeoffs with frequency/ IPC/area/reusability
- Both dynamic and static power analyzed
- Multiple vectors were required to cover interesting cases
- Unexpected activity & hot spots fed back
- Quiet vectors (idle/interlocked cases) especially useful in spotting power bugs



Dynamic power feedback plot Key: white (max) down to black (min)

Power Closure

Significant power savings came from the sum of many small improvements:

Hot Chips 18 THE ARCHITECTURE FOR THE DIGITAL WORLD®

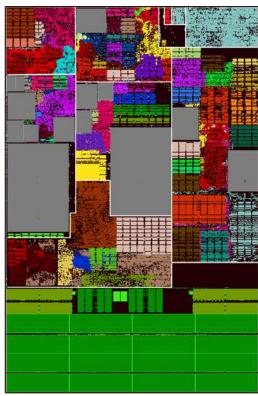
AR

Cortex-A8 Processor Summary

Goal of 2x performance of previous generation

- Achieved at 800MHz
- Exceeded at 1GHz
- Across 150+ ARM and industry benchmarks including EEMBC, SpecInt95, Mediabench, and partner provided applications

For mobile applications


- >600Mhz or 1200 DMIPS at <300mW</p>
- Low-power 65nm technologies

For tethered applications

- >1GHz or 2000DMIPS
- 90nm and 65nm technologies

6 licensees and counting

¹/₃ of the Top 15 WW Semiconductor Vendors

18

Copyright© 2006 ARM Limited All rights reserved.