

ARM996HS[™]

The First Licensable, Clockless 32-bit Processor Core

Arjan Bink, ARM996HS Technical Lead, Handshake Solutions Richard York, CPU Product Manager, ARM

ARM - Handshake Solutions Partnership

Announced in October 2004

ARM® E

- Jointly develop ARM core implementations
 - Enables new classes of applications where needs for ultra-low power, low electromagnetic emissions, and robustness converge
- ARM996HS announced in February 2006
 - Jointly market and promote the ARM996HS
 - Licensing of the ARM996HS is done by ARM Ltd
- Potential application domains
 - Automotive
 - Low-cost consumer electronics
 - Wireless
 - Medical implants
 - Smartcards
 - Sensor networks

ARM Embedded Processors Power Efficiency - DMIPS / W

Handshake Technology

- Design flow for clockless digital ICs
 - C and behavioural Verilog-like designentry language called HASTE
 - Based on a library of handshake components
 - Uses local handshakes instead of a global clock
 - Supports integration with synchronous blocks and systems
- Industry-proven tools and flow
 - 25 chip designs on the market
 - Over 100 million ICs already sold
- The ARM licensee receives:
 - Targeted Verilog netlist
 - Back-end scripts
- The flow to produce the netlist is completely invisible to the ARM licensee

Handshake Technology Inside

- Modules communicate by means of handshakes
- Handshakes consist of alternating request and acknowledge signals
- Request and acknowledge may contain (encode) data
- Four-phase handshake signaling
- Single-rail data encoding (bundled data)
- Thoroughly tested and completely hidden from the user

Handshake Technology Netlists

ARM996HS Overview

- 32-bit RISC CPU core
- ARMv5TE architecture
- Five-stage integer pipeline
- Fast 32-bit MAC
- 16-bit Thumb® and 32-bit ARM instruction sets
- Harvard bus architecture
- Dual AMBA[™] 3 AHB-Lite[™] interfaces
 - Instruction interface
 - Data interface
- Memory-protection unit (MPU)
- Nonmaskable interrupts (NMI)
- Hardware divide

ARM996HS Pipeline

- Typical ARM9E five-stage pipeline implementing the ARMv5TE ISA
- Pipeline control ensures distributed stage activation, parallel execution
- Stages clock only the required data elements
- Pipeline handshakes with system controller for instruction fetches, loads, and stores

Dual AMBA[™] 3 AHB-Lite[™]

Dual AMBA 3 AHB-Lite interfaces

- Instruction interface
- Data interface
- Improved system performance
 - Each stream has a dedicated bus
- Greater flexibility of system-level architecture
 - System architect decides where and how to unify
- Fully synchronous
 - Allows easy integration into a synchronous ASIC

Enhanced Memory-Protection Unit

- 32-byte granularity for fine-grain protection
 Important for stack checking
- Unified 12-region MPU

 Eight words or greater
- Separates :
 - User from system
 - Task from task
 - Data from data
 - Stack from stack
- Allows overlapping regions
 - For shared access

System Data
Global Data
Task 2 Data
Task 1 Data
Shared Library
Task 2 Code
Task 1 Code
RTOS Code
Task 2 Stack
Task 1 Stack
RTOS Data
Vectors

Example of protected memory map

Hardware Divide

- Supports signed and unsigned 32-bit division
 UDIV and SDIV instructions
- Implemented as an internal coprocessor 7 (c7)
 - Three user-accessible registers
 - Based on a 16-iteration SRT division algorithm
- Operates in parallel with the pipeline
 - Code can take advantage of that fact
- 13 equivalent cycles vs. 36 for ARM968E-S
- Straightforward tools and library support
 - Simple replacement for existing real-time divide library code

Nonmaskable interrupts

- A top-priority interrupt that cannot be masked by software
- Mapped onto the nFIQ interrupt signal
- Ideal for embedded-control applications where high reliability or high availability are paramount
- Typical uses: indicating parity failure in memory or critically low energy level in batteries

Tightly Coupled Memory Interface

Automatic adaptation: Pros and Cons

- Handshake circuits automatically adapt to changes in environmental conditions:
 - Temperature, supply voltage, supply current
- ✓ Very robust
 - Continues operating correctly over ranges in which a synchronous core could break down

No way to slow down the circuit to mimic worst-case environment conditions

X Circuit performance depends on the operating conditions

Solution: HT-Metrics Peripheral

- HT-Metrics acts as a brake for the ARM996HS via the Tempo interface
 - Pipeline can be synchronized with an external event, e.g. a clock
 - N instructions can be synchronized to M events
 - Pipeline metrics can be collected nonintrusively, e.g. instruction count
 - Speed can be reduced to mimic worstcase conditions
 - Enables advanced power management
 - Fully programmable, external, AMBA peripheral

Comparing ARM Cores

Feature	ARM996HS	ARM968E-S	ARM946E-S	ARM7TDMI-S
ARM ISA	v5TE	v5TE	v5TE	v4T
Core logic	Clockless	Synchronous	Synchronous	Synchronous
Pipeline depth	5 stages	5 stages	5 stages	3 stages
Thumb-1	✓	✓	✓	~
DSP extensions	\checkmark	✓	✓	×
Coprocessor I/F	×	×	✓	✓
HW divider	\checkmark	×	×	×
NMI	✓	×	×	×
Caches	×	×	4-128K / 4-128K	×
TCM (I / D)	0-4MB / 0-4MB	0-4MB / 0–4MB	0-1MB / 0–1MB	×
DMA	×	×	×	×
Memory Management	Enhanced MPU	×	MPU	×
Main I/O bus	2 x AHB-Lite	1 x AHB-Lite	1 x AHB	1 x AHB
Bus architecture	Harvard	Von Neumann	Von Neumann	Von Neumann

Power, Performance, Size

Feature	ARM996HS	ARM968E-S	
Speed	50 Equivalent MHz (WC), 77 Equivalent MHz (NC)	100 MHz (WC)	
	54 DMIPS, 83 DMIPS (NC)	107 DMIPS (WC)	
Area	< 0.69 mm ²	0.59 mm ²	
	89 Kgates (nand2)	88 Kgates (nand2)	
Power	0.045 mW/MHz	0.13 mW/MHz	

- Numbers based on post-layout simulation
 - Artisan Sage-X 0.13µ TSMC process
 - WC = worst, 1.08 V, 125°C, NC = nominal, 1.2V, 25°C
- ARM968E-S netlist synthesized for 100 MHz
- Power simulations at 77 MHz under nominal conditions
- Equivalent MHz is the speed needed by an ARM968E-S to achieve the same performance as the ARM996HS

Noise and Electromagnetic Radiation in Digital Circuits

- Digital circuits generate
 - Voltage noise on power supply lines
 - Might disrupt operation of A/D converter drawing power from the same source
 - Induced currents in the silicon substrate
 - Might disrupt operation of A/D converter integrated on the same substrate
- Digital circuits emit
 - EM radiation at their clock frequency
 - EM radiation at higher harmonics of their clock frequency
 - Radio receiver might mistake these signals for radio signals

Supply Current: Time Domain

- In a clocked circuit, activity is maximal shortly after the productive clock edge and fades away with time
- In terms of current:

 \Longrightarrow Noise in on-chip power and ground lines

- Local drops in supply voltage have impact
 - On performance
 - On circuit reliability

Low Current Peaks and Total Current

ARM996HS consumes 2.8x less power than an ARM968E-S and reduces current peaks by a factor 2.4

Current Peak Details

ARM996HS draws a **relatively constant current**, whereas the ARM968E-S **current swings between 0 and 25-35 mA**

Current Peak Histogram

ARM996HS current typically between in 1 to 5 mA range, whereas ARM968E-S has significant current up to 20 mA

Low Electromagnetic Emissions

ARM996HS offers low electromagnetic emissions

across the whole radio spectrum

ARM996HS Conclusions

- Fully ARMv5TE compatible
- Advanced features
 - Dual AHB-Lite interfaces
 - Enhanced MPU
 - Hardware divide
 - Nonmaskable interrupts
- Low gate count
- Low power
- Low current peaks
- Low electromagnetic emissions
- Zero (active) standby power
 - Zero (active) power wait-for-interrupt with immediate wake-up
- Robustness

ARM996HS Conclusions

- The processor is delivered as a firm core:
 - Targeted to customer's standard-cell library
 - Hardening scripts including design constraints
 - Design-for-test (DfT) included
 - Full support for automatic test-pattern generation (ATPG)
- What the end customer *does not* need:
 - Special memories
 - Special cell libraries
 - Custom circuit design
 - Special process technology
- Core availability
 - Currently available for licensing
- Tools availability
 - Mature compiler and debugger support for ARM9E core
 - Compatible with ARM and third-party tool vendors

Thank you

For any questions please contact us via http://www.handshakesolutions.com/Contact

Handshake Solutions

the first to offer a commercially viable way to exploit the benefits of self-timed circuits