A\nbric

TeraOPS Hardware: A New Massively-Parallel
MIMD Computing Fabric IC

Anthony Mark Jones
Mike Butts

Embedded Computing Problem

Traditional architectures
are reaching limits in performance,
scalability and ease of development

= Single CPUs and DSPs are reaching limits of
extending performance

= Ordinary multi-core processors
won'’t scale very far

Millions of Gates
300 -

= ASICs and high-end FPGAs are getting | BT

200

harder and more costly to develop

100

Design Productivity Ga,

50 ioi20 26952
02 03 04 08 1 2 3 2 43 47 50 55

ﬂ T T % T T T T T T T 1
Gary Smlth GartnerDataquest DAC 2003 m“l_ﬂ_ﬂﬂ 1992 1994 1996 1998 2000 2002 2004 2006

Mabric C comeatt

Embedded Synchronous Problem

MPEG2 Decoder example

= Ordinary globally
synchronous system

— Central controller required Frame store

(ext. RAM)
— Synchronization is up to
the developer

— Local changes break
global synchronization

— Difficult to validate

— Not scalable
= Globally asynchronous Frame store
system of Ambric (L R, Control. data
objects and channels , Fiter) Naturally

Asynchronous
distributed control

— Distributed control
— Self-synchronizing

— Local changes have 0 .

only local effects
Scalable Self-adjusts to any delay

Avbric

resynch

Ambric’s Structural Object Programming Model

= Objects are software programs running concurrently on an
asynchronous array of Ambric processors and memories

= Objects exchange data and control through a structure of
self-synchronizing asynchronous Ambric channels

= Objects are mixed and matched hierarchically to create new
objects, snapped together through a simple common interface

= Easier software development, high performance and scalability

Asynchronous
Ambric channel

Composite
object

Primitive object

running on ---
Ambric processor

Application

abric momsn

Ambric Registers and Channels

/ Processor \

<—>-<--> stall if out channel <

not accepting

/

SN

= Ambric register
— Latency, speed, area, power of an ordinary register
— FIFO buffering, localized forward and back-pressure

/ Processor

—stall if in channel
not valid

inch.read (k) ;

kb = k & Oxff;

\

-

-l

/

= Chains of Ambric registers form Ambric channels
— Fully encapsulated, fully scalable for control and data between objects

= Ambric processors are interconnected by Ambric channels
— Ambric registers permit inputs and outputs to run at different clock rates

abric

Traditional vs. Ambric Processors

y 3

RAM

A 4

= Traditional processor architecture
— Primary: register-memory hierarchy —|Regs
— Secondary: communication \\

= Ambric processor architecture
— Primary: communicate through channels \/7
— All data goes through channels Channels @ Ghannels
- Memory
- Registers
: Inter-prgcessor streams RAM Regs RAM
- Instruction streams
to reduce local storage

— Channels synchronize all events
— ELIO: Execute/Loop/Input/Output every cycle

abric

Compute Unit, RAM Unit

Compute Unit (CU) CuU RU
= SRD 32-bit CPU SR SRD [y Inst
— Streaming RISC with CPU J RW
DSP extensions CPU —_~ <
_ 3 ALUSs: 32b, 2x16b, 4x8b RAM KB
— 256 word local RAM v v 3 RAM
<lts) C
: <fe c O
= SR 32-bit CPU 2 configurable and ‘ |82 QKEA
— Streaming RISC " dynamic interconnect FHLSY <= C §
— TALU: 32b, 2x16b s of Ambric channels £ 5| 1k
64 word local RAM S R R
V' N >\
A\A 4 A\A 4 1 KB
= 32-bit Ambric channel ° RAM
. RAM
interconnect S F
— Processor-Processor CSPRU SRD < RW /
— CU-Neighbor CPU | v
— CU-Distant) El str
RAM Unit (RU) v !

= Four 1KB RAM banks

= RU engines
— RAMSs, FIFOs, etc.

abric

— = Ambric channel

Brics and Interconnect

|
= The bric is the physical <-§: i L ud
building-block
— Two CU-RU pairs ——
— 8 CPUs
— 13KB RAM | — =1
SR | | SRD g I
= Brics connect by A= ==
abutment to form a 21 o [|_|:
1]
core array L RU
— CU quads, RU quads ¥ RU|£| :i‘_ i .
L | — i SRD IS:IIQ
= Neighbor CU channels |_|: e W e
_] SRD SR
= Distant CU channels: bzt e |
. >y ¥
— bric-length hops
— configurable switches —
= No wires Ionger/
than a bric "* f ?‘

abric

Programming Model and Tools

= Structure

— Conceive your application as a
structure of objects and the messages
they exchange when running

— Divide-and-conquer using hierarchy ||
= Reuse ESREIESIE:
— Validated, encapsulated library objects
= Code and test

— Write your application-specific objects
and compile

— Verify with functional simulation
= Realize

— Run mapper-router and configure chip
= Run and Visualize

— Observe and control objects and < oo
messages using dedicated debug HW |

abric

Performance Metrics

= Prototype chip @ 45 brics:
— 1.08 trillion operations per second (24 BOPS per bric)
— 425 Gbps interconnect bi-section bandwidth
— 26 Gbps DRAM + 16 Gbps high-speed serial + 13 Gbps parallel

Ambric 45-bric Ambric 70-bric Tl C641x Xilinx Virtex-4
Prototype Example DSP LX100 - LX200
Process 130nm 90nm 90nm 90nm
MHz 333 MHz Est. 450 MHz 1,000 MHz 500 MHz
Published DSP 10-25X Est. 20-50X 1X n/a
Benchmarks throughput, throughput,
1/3 the code 1/3 the code
Multiply-
Accum./Sec. 60 GMACS Est. 125 GMACS 4 GMACS 48 GMACS
(16x16 — 32-bit)

abric

Application Example: Motion Estimation

frames,

candidate ’

motion
vectors

» SR >
v |RAM Calc
SR - 7
> RAM|SRD|,|SRD|RAM
—>workload
, motion
workload: vectors
DRAM current, target
4y macroblocks
" ME ™ ME .
RAMIF , motion
unit [unit [unit [unit [unit [unit [*] unit] unit vectors

= Perform SAD calculation for 16x16 macroblocks, choose best results

— Exhaustively over +/-16 pixel range, centered on any candidate vector
— For 720p (1280x720) @ 60 frames/sec, two reference frames

= Actual performance using 89% brics @ 300 MHz: 0.46 teraOPS
— 53% of maximum teraOPS available

abric

Intrinsically scalable to 65nm and beyond

More Performance
Same Price/Constant Area
5
tera
OPS
’ P Constant Performance,
Lower Price/Less Area

130nm 90nm 65nm

= Hierarchical Object-Based Modularity for Development Cost

— Massive design reuse requires strict encapsulation, simple identification of
dependencies and local synchronization

= Communication-Centric Design for Timing Scalability
— Globally asynchronous, locally synchronous (GALS)

= Massive Parallelism for Power Scalability
— MIMD architecture: power scales linearly with performance

abric

Other Massively-Parallel Architectures

= Ambric architecture is a member of an emerging class:
Reconfigurable Processing Array (RPA)

— Hundreds of processing elements such as CPUs,
ALUs, memoiries...

— Rich, word-wide, reconfigurable interconnect fabric
— SIMD control or MIMD control

= MIMD is more general than SIMD
— MIMD is effective on irregular complex apps (H.264)
— Efficient on other data structures than just vectors
— Processors stay busy on different size data sets
— Processors do not have to branch in lock-step

= Ambric’s MIMD RPA is practical
— Interconnect is dynamically self-scheduling
— Based on an asynchronous parallel model of computation
— Standard high-level language (strict subset) or assembly
— Globally asynchronous: efficient and scalable

abric

‘Kestrel’ Prototype IC

= 130nm general-purpose
Cu-FSG std-cell digital process

= 117 million transistors

= All standard cells in the array

= 85% cell-density in the array

= 333 MHz

= ~ 1/3 the area of a large
90nm FPGA

- 3
—
-—
PN
e A

abric

Summary

= Ambric has solved many of the architectural and programming
challenges of massively-parallel embedded computing

= Ambric’s chip and tools realize a Structural Object Programming
Model for ease of development

= Amobric chip and tools deliver 10X+ performance over traditional
alternatives for high-performance embedded computing

= Amobric’s architecture economically scales with Moore's Law

Patents pending

abric

