
HotChips 2006 1

An Implementation of Hardware 

Accelerator using Dynamically 
Reconfigurable Architecture

Takashi Yoshikawa, Yutaka 
Yamada and Shigehiro Asano

Toshiba R&D Center



HotChips 2006
2

Outline

Motivation

Architecture overview

Application example (H.264 decode)

Evaluation

Performance

Area consumption

Conclusion



HotChips 2006
3

Motivation

Need better solution for multimedia applications

Processor solution is not efficient

Lots of data preparation before actual operations

Data alignment, Shuffle, Shift

SIMD operations don’t always fit multimedia applications

Sometimes an instruction requires two or more operations (ex. ++--
++--) to maximize its efficiency

Difficult to add newly defined instructions to an existing ISA for 
supporting these operations

100, 200, or even more instructions needs to be added

Hardware engine is efficient enough but not flexible

Needs a new design for each application

Not easy to fix bugs



HotChips 2006
4

Motivation (Cont’d)

Reconfigurable logic may solve these problems 
but….

Utilization of logic/network must be high enough

Overhead of loading configuration must be covered with 
processing time

We propose dynamically reconfigurable HW 
engine optimized for multimedia applications



HotChips 2006
5

Outline

Motivation

Architecture overview

Application example (H.264 decode)

Evaluation

Performance

Area consumption

Conclusion



HotChips 2006
6

Architecture overview (entire block 
diagram)

I/O 
Buffer

I/O Buffer Ctrl

Inter-Unit Buffer

Formatter1AUX1

Input Ctrl

Output Ctrl

AUX0

Input Ctrl

Output Ctrl

Input Ctrl

Output Ctrl

Write 
Control

Formatter0

I/O Buffer Ctrl

Output Ctrl

DMAC

Host 
Processor

System 
Memory

Code 
Buffer

c
o

n
tro

l
b
u
s

Input Ctrl



HotChips 2006
7

Architecture overview (data/code transfer)

I/O 
Buffer

Inter-Unit Buffer

Formatter1AUX1

Input Ctrl

Output Ctrl

AUX0

Input Ctrl

Output Ctrl

Input Ctrl

Output Ctrl

Formatter0

I/O Buffer Ctrl

Output Ctrl

DMAC

Host 
Processor

System 
Memory

Code 
Buffer

R
e

q
u

e
s
t

codes

(if not in Code
Buffer)

data

I/O Buffer Ctrl

Write 
Control

Input Ctrl



HotChips 2006
8

Architecture overview (data/code transfer)

DMAC controls the transfer of data/codes between 
a system memory and I/O Buffer/Code Buffer

The code consists of the configuration bits and the 
control code

The control code specifies which configuration bits should be 
applied to the reconfigurable units at any given cycle

DMAC also initiates code transfer from Code Buffer 
to the reconfigurable units

Reconfigurable units: Formatters, AUXs and Write 
Control Unit

A host processor issues a command with a system 
memory address to DMAC as a request

Issued through the control bus



HotChips 2006
9

Architecture overview (Formatter)

I/O 
Buffer

Inter-Unit Buffer

Formatter1AUX1

Input Ctrl

Output Ctrl

AUX0

Input Ctrl

Output Ctrl

Input Ctrl

Output Ctrl

Formatter0

I/O Buffer Ctrl

Output Ctrl

DMAC

Host 
Processor

System 
Memory

Code 
Buffer

c
o

n
tro

l
b
u
s

data

I/O Buffer Ctrl

Write 
Control

Input Ctrl



HotChips 2006
10

Architecture overview (Formatter)

Formatter Units

Each consists of Input Control, Output Control, 

full crossbar switches and 5 stages of 
processing element (PE)

Next two slides describe PE in detail 

Input Control reads data from I/O buffer (or Inter Unit 
Buffer) and send the data along with a Context ID

Context ID is a pointer to one of the configurations of PE

Output Control receives the data from the last 
stage of PE and writes it into Inter Unit Buffer



HotChips 2006
11

Architecture overview (Formatter)

data A

C
o

n
fig

M
e

m

data B

Shuffle

16-bit ALU * 8
PE
0

XB

XBXB

16x8 (8bit) crossbars 
available at Formatter0

8x8 (16bit) crossbar 
available at Formatter1

Each PE has its own 
configuration memory

Data, context ID and 

valid (described later) 

goes down the pipeline 
in sync

Only 4 patterns 
are available

Formatter

validID

PE1 (same as PE0) 

PE2 (same as PE0) 

PE3 (same as PE0) 

PE4 (same as PE0) 



HotChips 2006
12

data A

Architecture overview (Processing Element)

C
o

n
fig

M
e

m

data B

From Previous PE

To Next PE

ID valid

data A data B ID valid

Processing Element (PE) Each ALU can be 
configured separately

2 outputs 
each

ALU ALU ALU ALU ALU ALU ALU ALU



HotChips 2006
13

Architecture overview (Inter-Unit Buffer)

MUX

bufbuf

MUX

bufbuf

MUX

bufbuf

MUX

bufbuf

MUX

bufbuf

MUX

bufbuf

MUX

bufbuf

From Fomatter0 From Formatter1 From AUX0 From AUX1

To Formatter1 To AUX0 To AUX1 To Write Ctrl

data

select



HotChips 2006
14

Architecture overview (Inter-Unit Buffer)

Inter-Unit Buffer (IUB)

Consists of 14 data buffers (size:128bit each)

Formatters and AUX write output data into one 
of these buffers

The buffer ID is associated with a context ID from 
those units

Conflict of buffer writes has been statically 
avoided by the control code

All the timing of buffer writes is deterministic

Each buffer has a Valid Bit
Described in detail in the application example



HotChips 2006
15

Architecture overview (AUX units)

I/O 
Buffer

Inter-Unit Buffer

Formatter1AUX1

Input Ctrl

Output Ctrl

AUX0

Input Ctrl

Output Ctrl

Input Ctrl

Output Ctrl

Formatter0

I/O Buffer Ctrl

Output Ctrl

DMAC

Host 
Processor

System 
Memory

Code 
Buffer

c
o

n
tro

l
b
u
s

I/O Buffer Ctrl

Write 
Control

Input Ctrl



HotChips 2006
16

Architecture overview (AUX units)

AUX (Auxiliary) Units

Perform operations which can’t be handled by 
Formatter

Multiplication, 32bit operations, etc.

Each AUX unit consists of Input Control, Output 
Control and single reconfigurable SIMD unit

SIMD unit consists of eight 32-bit integer units
Multiplier is 16-bit wide

Result is held in a 32x8 bit accumulator

All of the operation units share the same configuration

One AUX can transfer its output data to the other AUX 
directly

Inter-Unit Buffer may also be used if necessary



HotChips 2006
17

Architecture overview (Write Control Unit)

I/O 
Buffer

Inter-Unit Buffer

Formatter1AUX1

Input Ctrl

Output Ctrl

AUX0

Input Ctrl

Output Ctrl

Input Ctrl

Output Ctrl

Formatter0

I/O Buffer Ctrl

Output Ctrl

DMAC

Host 
Processor

System 
Memory

Code 
Buffer

c
o

n
tro

l
b
u
s

I/O Buffer Ctrl

Write 
Control

Input Ctrl



HotChips 2006
18

Architecture overview (Write Control Unit)

Write Control Unit

Reads 128bit data from Inter-Unit Buffer and 
writes it into I/O buffer

Data shuffle available (8x8 [16bit] full crossbar)

Context IDs are issued in the same manner as 
Input Control of Formatter/AUX

The Context ID is associated with:
The buffer containing write data

128bit-aligned write address
The address is given in conjunction with the control code

Byte enable (for partial write)

Configuration of a crossbar switch



HotChips 2006
19

Architecture overview (Timing Chart)

Timing chart example

Load0
Load1
Formatter0 (PE0)
Formatter0 (PE1)
Formatter0 (PE2)
Formatter0 (PE3)
Formatter0 (PE4)
IUB Formatter1 (A0)

Formatter1 (PE0)
IUB Formatter1 (B0)

Formatter1 (PE4)
IUB AUX0 (A0)
IUB AUX0 (B0)
IUB AUX1 (A0)
IUB AUX1 (B0)
IUB AUX1 (A1)
IUB AUX1 (B1)

AUX1
AUX0

IUB Write Control (0)

Store0
Store1

IUB Write Control (1)

Formatter1 (PE1)
Formatter1 (PE2)
Formatter1 (PE3)

0

0 0

2

3

2

5

0

6 7

1

8

5 6

6

7

0 2

4 5 6

6
7

6 7 8
6 7 8

6 7 8
6 7 8

6 7 8
6 7

4

8

6

9 10111211121112
1112111211

11121112
111211

1112
11

Starts when buffer A0 & B0

both become valid

4 context IDs are used

at the same cycle

Pattern of Context ID change is 

statically specified in the control code

Context ID changes

as frequently as

every cycle
cycle

Formatter0

Formatter1

AUX 0&1

Write Control

Number represents a 
Context ID for each unit

8

0 00000000

0
0

0
0000000 0

0
0000000

0
0 000

0
00000

00
0

000000
0 00 00000000

0 00 00000000
0 00 00000000

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

22
22

2
2

2
2

2
2

2
2
3

3

2

3
3

3

3

3
3

3
3

3
3

3

3 3

4 54 54 54
54 54 54 54

54 54 54 54
54 54 54 54

54 54 54 54
54 54 54 54

54 54 54 54

55 5 5

9
9

9
9

9
9

9

10
10

10
10

10
10

2 444

0
0

0
0

0
0

1
1

1
1

1

1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1

1 1 1

2
2

2
2

2

2
0

21 3 4 8 9

9

3

0 1 2 3



HotChips 2006
20

Outline

Motivation

Architecture overview

Application example (H.264 decode)

Evaluation

Performance

Area consumption

Conclusion



HotChips 2006
21

Application example (H.264 decode: 
intra16x16 prediction [plane])

int H,V,a,b,c,t,i,pt=132,p;

t=a–7*(b+c)+16;
b=(5*H+32)>>6; c=(5*V+32)>>6;
a=(top[15]+left[15])<<4;

V+=-left[7-b]*b+left[7+b]*b; }
H+=top[15]*8; V+=left[15]*8;

{ H+=-top[7-b]*b+top[7+b]*b;
for (b=1;b<8;b++)
V=H=-top[7]*8;

for (i = 0; i < 256; i++)
{ p=t>>5; t+=b;

if ((i & 15) == 15)
{ t+=c–b*16; pt+=16; } }

void intra16x16_plane_prediction(
uchar *left, uchar *top) {

unsigned char Org[768]
Original Code

}

Org[pt++]=(p<0)?0:(p>255)?255:p;

top[0..15] left[0..15]

F0 (0) F0 (1)

F1 (0) F1 (1) F1 (2)

F1 (3) A0 (0)

A0 (1)

Org[pt..pt+7], 
pt+=8

A1 (0)

F1 (4)

A0 (2)

A0 (3)

A0 (4)

Org[pt+8..pt+15], 
pt+=24

A1 (1)

F1 (5)

forms loop

Context Dependency Graph

A0 (1), A0 (2), 
A0 (3)
(next iteration)



HotChips 2006
22

Application example (operation graph)
ALU & full crossbar/shuffle configuration for Formatter0 context 0&1

sub

* bold arrow forwarded 
to red arrow

A
B

A
A op B

Full Crossbar (16x8)

B
A

A-B
A-B

* blue arrow is subtractor
* both outputs are 
same by default

unused operation

(unused data paths 
are not shown)

A=top[0..15] B=top[0..15]

A=F89ABCDE
B=76543210

Shuffle pattern 1

01234567 -> 10325476

0123456789ABCDEF

Shuffle pattern 2

01234567 -> 10325476

Shuffle pattern 1

Shuffle pattern 2

sub
sub sub sub sub sub sub sub

fwd fwd fwd fwd

fwd fwd fwd

fwd fwdfwd fwd fwd

fwd fwd fwd fwd

x8

x2 x2

x2

add add add

add add add

add add

add add add add



HotChips 2006
23

Application example (Timing Chart)

Timing Chart (96 cycles in total)

3
3

3
3

3
3

4
4

4
4

4

4

5

5

5
5

5
5

2

4
4

4
4

4

5
5

5
5

5

4
5

2

4
4

4
4

4

5
5

5
5

5

4
4

4
4

4

5
5

5
5

5

4
4

4
4

4

5
5
4

4

2
2

5
4

2
2

Load0
Load1
Formatter0 (PE0)
Formatter0 (PE1)
Formatter0 (PE2)
Formatter0 (PE3)
Formatter0 (PE4)
IUB Formatter1 (A0)

Formatter1 (PE0)
IUB Formatter1 (B0)

Formatter1 (PE4)
IUB AUX0 (A0)
IUB AUX0 (A1)
IUB AUX0 (B0)
IUB AUX0 (B1)
IUB AUX1 (A0)
IUB AUX1 (A1)

AUX1
AUX0

IUB Write Control (0)

Store0
Store1

IUB Write Control (1)

Formatter1 (PE1)
Formatter1 (PE2)
Formatter1 (PE3)

5

IUB AUX1 (B0)
IUB AUX1 (B1)

Loop

cycle

Formatter0

Formatter1

AUX 0&1

Write
Control

IUB AUX1 is not used 

(AUX0 transfers data 
to AUX1 directly)

Execution images of 

these cycles are shown 
in the next animation

0

0
0

0
0

0
0

0

1
1

1

1
1

1
1

1
0

0
0

0
0 1 2

1 2
1 2

1 2
1 2

0

0 1
0

1

2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0

2 2 2 2 2 2
3 3 3 3 3 3

0

22

0
0

0
0

0
0

0
0

1
1

1
1

1

1



HotChips 2006
24

Application example (Execution Image)

data vData Vdata v

data A

M
e
m

data B ID valid

ALU * 8
PE
0

data A

M
e
m

data B ID valid

ALU * 8
PE
1

Data V

exec ctrl

Input Ctrl

data v data vData V Data V

VV

0

A new Context ID is 

issued to PE0 when all 

the input data required 

for the context become 

valid. The ID is issued 
with data and valid=1.



HotChips 2006
25

data A

M
e
m

data B ID valid

ALU * 8
PE
0

Application example (Execution Image)

data v

exec ctrl

Input Ctrl

data v data v data v

Data Data

Data V Data V

V0

Inst 0

data A

M
e
m

data B ID valid

ALU * 8
PE
1

When PE receives a valid 

Context ID, it changes its 

configuration accordingly 

and performs calculation & 
data shuffle



HotChips 2006
26

data A

M
e
m

data B ID valid

ALU * 8
PE
0

data A

M
e
m

data B ID valid

ALU * 8
PE
1

Application example (Execution Image)

data v

exec ctrl

Input Ctrl

data v data v data v

VV

1

Data Data V0

DataData VV DataData VVAt the next cycle, both 

data remains valid, 

therefore the next 
Context ID is issued.



HotChips 2006
27

data A

M
e
m

data B ID valid

ALU * 8
PE
0

Application example (Execution Image)

data v

exec ctrl

Input Ctrl

data v data v data v

Data Data V1

Inst 1

data A

M
e
m

data B ID valid

ALU * 8
PE
1

Data Data VID

Inst 0

Data V Data V

The change of configuration 

and data calculation/shuffle 

are performed in a pipeline 

fashion. PE0 & PE1 use 
different Context ID.



HotChips 2006
28

Outline

Motivation

Architecture overview

Application example (H.264 decode)

Evaluation

Performance

Area consumption

Conclusion



HotChips 2006
29

Evaluation (Performance)

Application: H.264 decode

Estimated number of cycles required for decoding one 
macroblock

When 2Mbps VGA stream is 
decoded

3660 
(average)

Our Accelerator 
(typical)

dual G5@2Ghz recommended by 
Apple for 8Mbps, 24fps HD stream

16576 
(average)

PowerPC G5 
@2GHz

Actual cycles required for decoding 
the most demanding macroblock

4923 (intra)

7108 (inter)

Our Accelerator 
(real)

ideal cycles expected for decoding 
the most demanding macroblock

3792 (intra)

5705 (inter)

Our Accelerator 
(ideal)

CommentCyclesName

More than 4 times faster than PowerPC 
G5 in terms of number of cycles required



HotChips 2006
30

Evaluation (Performance Breakdown)

Timing chart (real, intra)

1100 more cycles are required than the ideal cycles

The reason: configuration transfer cannot be completely hidden 
by signal processing

It can be hidden if the number of configuration memories increases 
(currently two buffers)

IQ/IDCT Intra4x4(luma) Intra(chroma) System memory write (frame buffer) Deblocking filter(luma)

Deblocking filter(chroma)System memory write (pixel buffer) Store macroblockCompensation

4923 cycles

Data transfer
Config. transfer
Code transfer
Sig. processing

Param calc.



HotChips 2006
31

Evaluation (Area consumption)

Area (logic gate) consumption

--2,200- Buffer   (x1 in PE)

--1,000- Shuffle (x1 in PE)

--1,700- ALU     (x8 in PE)

6567,50018,700- Processing Element (x5 in Form.)

2,11222,0004,000Crossbar (Formatter0)

--20,000Inter Unit Buffer

31,584314,200319,000Total

9609,50045,000AUX (x2)

8007,6006,000I/O Buffer Interface (Read & Write)

7687,6003,000Crossbar (Formatter1, Write Ctrl Unit)

13,696136,00020,000Total Inter Unit Ctrl. (Input & Output)

1,15212,000800Micro Controller (x5)

3,13631,00087,500Formatter (x2)

Memory Size

[bit]

F/F Memory 
[gate size]

Logic

[gate size]



HotChips 2006
32

Evaluation (Chip layout)

Formatter0

Formatter1

AUX0

AUX1Write 
Ctrl

Inter Unit 
Buffer



HotChips 2006
33

Outline

Motivation

Architecture overview

Application example (H.264 decode)

Evaluation

Performance

Area consumption

Conclusion



HotChips 2006
34

Conclusion

Presented an implementation of hardware 

accelerator using dynamically reconfigurable 
architecture

Efficient signal processing can be achieved by 
reconfiguring ALUs and crossbars dynamically

More efficient than a general SIMD unit because each 
crossbar/16bit-ALU can be reconfigured differently

Not limited to the acceleration of H.264 decode

Can also accelerate H.264 encode and other codecs
by applying different configurations



HotChips 2006
35

Conclusion (cont’d)

Performance

Expects 30 frames/sec with 3 accelerators 
running at 300MHz for decoding Full HD H.264 
video

More than 4 times faster than PowerPC G5 in terms 
of number of cycles required for decoding one 
macroblock

Area consumption (number of logic gates)

319K Gates (excluding memory)
Small enough considering its performance

Size of buffer memory will be 24KB or less



HotChips 2006
36

Backup Slides



HotChips 2006
37

Evaluation (Comparison with PowerPC G5)

Application: H.264 decoder

Full HD frame (1920x1080 pixels) consists of 
8100 macroblocks)

one macroblock = 16x16 pixels

To achieve frame rate = 24 Full HD frame/sec, 
one macroblock must be decoded in 5.14 sec 

Requires dual 2.0GHz Power Mac G5 (Apple’s 
recommendation)

decoded w/ Quicktime7.1 (AltiVec used)

5.14 sec = 10288 cycles at 2.0GHz



HotChips 2006
38

Evaluation (Function level performance 
results)

69 if motion compensation (luma) excluded133Motion 
compensation

100Store macroblock

Worst case (filter applied maximum times)~ 784Deblocking filter 
chroma

Worst case (filter applied maximum times)~ 2112Deblocking filter 
luma

Worst case (6/4-tap filter applied max. times)~ 1579/~163Inter prediction 
(luma/chroma)

motion compensation (luma) included~ 448 / 75Intra prediction 
(luma/chroma)

204 if intra16x16 prediction is not used221IQ/IDCT

CommentCyclesName


