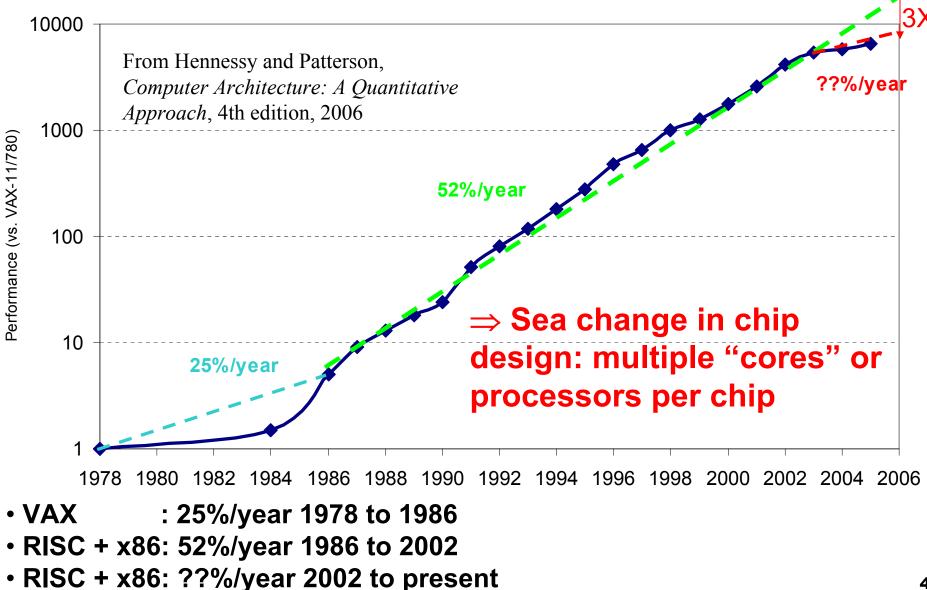


Research Accelerator for Multiple Processors

David Patterson (Berkeley, CO-PI), Arvind (MIT), Krste Asanovíc (MIT), Derek Chiou (Texas), James Hoe (CMU), Christos Kozyrakis (Stanford), Shih-Lien Lu (Intel), Mark Oskin (Washington), Jan Rabaey (Berkeley), and John Wawrzynek (Berkeley-PI)

Conventional Wisdom (CW) in Computer Architecture

- Old Conventional Wisdom: Demonstrate new ideas by building chips
- New Conventional Wisdom: Mask costs, ECAD costs, GHz clock rates mean


 \approx researchers cannot build believable prototypes

 \Rightarrow simulation only practical outlet

Conventional Wisdom (CW) in Computer Architecture

- Old CW: Power is free, Transistors expensive
- New CW: "Power wall" Power expensive, Xtors free (Can put more on chip than can afford to turn on)
- Old: Multiplies are slow, Memory access is fast
- New: "Memory wall" Memory slow, multiplies fast (200 clocks to DRAM memory, 4 clocks for FP multiply)
- Old : Increasing Instruction Level Parallelism via compilers, innovation (Out-of-order, speculation, VLIW, ...)
- New: "ILP wall" diminishing returns on more ILP HW
- New: Power Wall + Memory Wall + ILP Wall = Brick Wall
 - □ Old CW: Uniprocessor performance 2X / 1.5 yrs
 - New CW: Uniprocessor performance only 2X / 5 yrs?

Uniprocessor Performance (SPECint)

Déjà vu all over again?

"... today's processors ... are nearing an impasse as technologies approach the speed of light.."

David Mitchell, *The Transputer: The Time Is Now* (1989)

- Transputer had bad timing (Uniprocessor performance[↑]) ⇒ Procrastination rewarded: 2X seq. perf. / 1.5 years
- "We are dedicating all of our future product development to multicore designs. ... This is a sea change in computing"

Paul Otellini, President, Intel (2005)

5

■ All microprocessor companies switch to MP (2X CPUs / 2 yrs)
 ⇒ Procrastination penalized: 2X sequential perf. / 5 yrs

Manufacturer/Year	AMD/'05	Intel/'06	IBM/'04	Sun/'05
Processors/chip	2	2	2	8
Threads/Processor	1	2	2	4
Threads/chip	2	4	4	32

Problems with "Manycore" Sea Change

- 1. Algorithms, Programming Languages, Compilers, Operating Systems, Architectures, Libraries, ... not ready for 1000 CPUs / chip
- 2. \approx Only companies can build HW, and it takes years
- 3. Software people don't start working hard until hardware arrives
 - 3 months after HW arrives, SW people list everything that must be fixed, then we all wait 4 years for next iteration of HW/SW
- 4. How get 1000 CPU systems in hands of researchers to innovate in timely fashion on in algorithms, compilers, languages, OS, architectures, ... ?
- 5. Can avoid waiting years between HW/SW iterations?

Outline

- The Parallel Revolution has started
- RAMP Vision
- RAMP Hardware
- Status and Development Plan
- Description Language
- Related Approaches
- Potential to Accelerate MP&NonMP Research
- Conclusions

Build Academic MPP from FPGAs

- As ≈ 25 CPUs will fit in Field Programmable Gate Array (FPGA), 1000-CPU system from ≈ 40 FPGAs?
 - 8-16 32-bit simple "soft core" RISC at 100MHz in 2004 (Virtex-II)
 - FPGA generations every 1.5 yrs; \approx 2X CPUs, \approx 1.2X clock rate
- HW research community does logic design ("gate shareware") to create out-of-the-box, MPP
 - □ E.g., 1000 processor, standard ISA binary-compatible, 64-bit, cache-coherent supercomputer @ \approx 200 MHz/CPU in 2007
 - RAMPants: Arvind (MIT), Krste Asanovíc (MIT), Derek Chiou (Texas), James Hoe (CMU), Christos Kozyrakis (Stanford), Shih-Lien Lu (Intel), Mark Oskin (Washington), David Patterson (Berkeley, Co-PI), Jan Rabaey (Berkeley), and John Wawrzynek (Berkeley, PI)

"Research Accelerator for Multiple Processors"

Characteristics of Ideal Academic CS Research Parallel Processor? Scales – Hard problems at 1000 CPUs

- Cheap to buy Limited academic research \$
- Cheap to operate, Small, Low Power \$ again
- Community Share SW, training, ideas, …
- Simplifies debugging High SW churn rate
- Reconfigurable Test many parameters, imitate many ISAs, many organizations, ...
- Credible Results translate to real computers
- Performance Fast enough to run real OS and full apps, get results overnight

Why RAMP Good for <u>Research MPP</u>? <u>RAMP</u>

	SMP	Cluster	Simulate	RAMP
Scalability (1k CPUs)	С	А	А	Α
Cost (1k CPUs)	F (\$40M)	C (\$2-3M)	A+ (\$0M)	A (\$0.1-0.2M)
Cost of ownership	А	D	А	Α
Power/Space (kilowatts, racks)	D (120 kw, 12 racks)	D (120 kw, 12 racks)	A+ (.1 kw, 0.1 racks)	A (1.5 kw, 0.3 racks)
Community	D	Α	А	А
Observability	D	С	A+	A+
Reproducibility	В	D	A+	A+
Reconfigurability	D	С	A+	A+
Credibility	A+	A+	F	B+/A-
Perform. (clock)	A (2 GHz)	A (3 GHz)	F (0 GHz)	C (0.12 GHz)
GPA	С	B-	В	A -

Can RAMP keep up?

- FGPA generations: 2X CPUs / 18 months
 - □ 2X CPUs / 24 months for desktop microprocessors
- 1.1X to 1.3X performance / 18 months
 1.2X? / year per CPU on desktop?
- However, goal for RAMP is accurate system emulation, not to be the real system
 - □ Goal is accurate target performance, parameterized reconfiguration, extensive monitoring, reproducibility, cheap (like a simulator) while being credible and fast enough to emulate 1000s of OS and apps in parallel (like hardware)
 - □ OK if 20X slower than real 1000 processor hardware, provided >1000X faster than simulator of 1000 CPUs

Accurate Clock Cycle Accounting

- Key to RAMP success is cycle-accurate emulation of parameterized target design
 - As vary number of CPUs, CPU clock rate, cache size and organization, memory latency & BW, interconnet latency & BW, disk latency & BW, Network Interface Card latency & BW, ...
 - Least common divisor time unit to drive emulation?
 - For research results to be credible
 - To run standard, shrink-wrapped OS, DB,...
 - Otherwise fake interrupt times since devices relatively too fast
- \Rightarrow Good clock cycle accounting is high priority RAMP project

Why 1000 Processors?

- Eventually can build 1000 processors per chip
- Experience of high performance community on stress of level of parallelism on architectures and algorithms
 - 32-way: anything goes
 - 100-way: good architecture and bad algorithms or bad architecture and good algorithms

1000-way: good architecture and good algorithms

- Must solve hard problems to scale to 1000
- Future is promising if can scale to 1000

RAMP 1 Hardware

Completed Dec. 2004 (14x17 inch 22-layer PCB)

Board:

5 Virtex II FPGAs, 18 banks DDR2-400 memory, 20 10GigE conn.

1.5W / computer,
 5 cu. in. /computer,
 \$100 / computer

Box:

8 compute modules in 8U rack mount chassis 1000 CPUs : ≈1.5 KW, ≈ ¼ rack, ≈ \$100,000

BEE2: Berkeley Emulation Engine 2 By John Wawrzynek and Bob Brodersen with students Chen Chang and Pierre Droz

RAMP Storage

- RAMP can emulate disks as well as CPUs
 - □ Inspired by Xen, VMware Virtual Disk models
 - Have parameters to act like real disks
 - Can emulate performance, but need storage capacity
- Low cost Network Attached Storage to hold emulated disk content
 - $\hfill\square$ Use file system on NAS box
 - E.g., Sun Fire X4500 Server ("Thumper")
 48 SATA disk drives,
 24TB of storage @ <\$2k/TB

4 Rack Units High

the stone soup of architecture Wawrzynek research platforms Hardware Chiou Patterson Glue-support I/0 Kozyrakis Hoe Monitoring Coherence Asanovic Oskin Net Switch Cache Arvind Lu x86 PPC

Handicapping ISA Donations

- Got it: IBM Power 405 (32b),
 Sun SPARC v8 (32b), Xilinx Microblaze (32b)
- Sun announced 3/21/06 donating T1 ("Niagara") 64b SPARC to RAMP
- Likely: IBM Power 64b
- Likely: Tensilica
- Probably (haven't asked): MIPS32, MIPS64
- ??: ARM
- No: x86, x86-64
 - □ But Derek Chiou of UT looking at x86 binary translation

Quick Sanity Check

- BEE2 4 banks DDR2-400 per FPGA
- Memory BW/FPGA = 4 * 400 * 8B = 12,800 MB/s
- 16 32-bit Microblazes per Virtex II FPGA (last generation)
 - □ Assume 150 MHz, CPI is 1.5 (4-stage pipeline), 33% Load/Stores
 - □ BW need/CPU = $150/1.5 * (1 + 0.33) * 4B \approx 530$ MB/sec
- BW need/FPGA \approx 16 * 530 \approx 8500 MB/s
 - 2/3 Peak Memory BW / FPGA
- Suppose add caches (.75MB \Rightarrow 32KI\$, 16D\$/CPU)
 - □ SPECint2000 I\$ Miss 0.5%, D\$ Miss 2.8%, 33% Load/stores, 64B blocks*
 - BW/CPU = $150/1.5*(0.5\% + 33\%*2.8\%)*64 \approx 100$ MB/s
- BW/FPGA with caches \approx 16 * 100 MB/s \approx 1600 MB/s
 - □ 1/8 Peak Memory BW/FPGA; plenty BW available for tracing, ...
- Example of optimization to improve emulation

* Cantin and Hill, "Cache Performance for SPEC CPU2000 Benchmarks"

Outline

- Parallel Revolution has started
- RAMP Vision
- RAMP Hardware
- Status and Development Plan
- Description Language
- Related Approaches
- Potential to Accelerate MP&NonMP Research
- Conclusions

3 Examples of RAMP to Inspire Others

Transactional Memory RAMP

- Based on Stanford TCC
- Led by Kozyrakis at Stanford

Message Passing RAMP

- First NAS benchmarks (MPI), then Internet Services (LAMP)
- Led by Patterson and Wawrzynek at Berkeley

Cache Coherent RAMP

- Shared memory/Cache coherent (ring-based)
- Led by Chiou of Texas and Hoe of CMU
- Exercise common RAMP infrastructure
 - RDL, same processor, same OS, same benchmarks, ...

RAMP Philosophy

Build vanilla out-of-the-box examples to attract software community

Multiple industrial ISAs, real industrial operating systems, 1000 processors, accurate clock cycle accounting, reproducible, traceable, parameterizable, cheap to buy and operate, ...

But RAMPants have grander plans (will share)

- □ Data flow computer ("Wavescalar") Oskin @ U. Washington
- 1,000,000-way MP ("Transactors") Asanovic @ MIT
- □ Distributed Data Centers ("RAD Lab") Patterson @ Berkeley
- Transactional Memory ("TCC") Kozyrakis @ Stanford
- □ Reliable Multiprocessors ("PROTOFLEX") Hoe @ CMU
- □ X86 emulation ("UT FAST") Chiou @ Texas
- □ Signal Processing in FPGAs ("BEE2") Wawrzynek @ Berkeley

RAMP Milestones

September 2006 Decide on 1st ISA

- Verification suite, Running full Linux, Size of design (LUTs/BRAMs)
- □ Executes comm. app binaries, Configurability, Friendly licensing

January 2007 milestones for all 3 RAMP examples

- Run on Xilinx Virtex 2 XUP board
- □ Run on 8 RAMP 1 (BEE2) boards
- □ 64 to 128 processors

June 2007 milestones for all 3 RAMPs

- □ Accurate clock cycle accounting, I/O model
- Run on 16 RAMP 1 (BEE2) board and Virtex 5 XUP board
- □ 128 to 256 processors

2H07: RAMP 2.0 boards on Virtex 5

 3rd party sells board, download software and gateware from website on RAMP 2.0 or Xilinx V5 XUP boards

Transactional Memory status (7/06)

- 8 CPUs with 32KB L1 data-cache with Transactional Memory support
 - □ CPUs are hardcoded PowerPC405, Emulated FPU
 - □ UMA access to shared memory (no L2 yet)
 - Caches and memory operate at 100MHz
 - Links between FPGAs run at 200MHz
 - □ CPUs operate at 300MHz
- A separate, 9th, processor runs OS (PowerPC Linux)
- It works: runs SPLASH-2 benchmarks, AI apps, C-version of SpecJBB2000 (3-tier-like benchmark)
- Transactional Memory RAMP runs 100x faster than simulator running on a Apple 2GHz G5 (PowerPC)

Message Passing status (7/06)

- 32 CPUs each with 32KB L1 data-cache on one BEE2 board
- CPUs, Caches, Links operate at 100MHz
- Shared FPU every 4 CPUs (1 per FPGA)
- Each CPU runs uC Linux (microcontroller Linux)
- CPUs are softcore MicroBlazes
 (32-bit Xilinx RISC architecture)

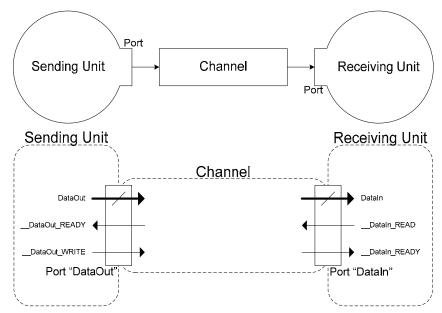
RAMP Project Status

NSF infrastructure grant awarded 3/06

□ 2 staff positions (NSF sponsored), no grad students

IBM Faculty Awards to RAMPants 6/06

 Krste Asanovic (MIT), Derek Chiou (Texas), James Hoe (CMU), Christos Kozyrakis (Stanford), John Wawrzynek (Berkeley)


3-day retreats with industry visitors

- "Berkeley-style" retreats 1/06 (Berkeley), 6/06 (ISCA/Boston), 1/07 (Berkeley), 6/07 (ISCA/San Diego)
- RAMP 1/RDL short course
 - □ 40 people from 6 schools 1/06

RAMP Description Language (RDL)

- RDL describes plumbing to connect units together ≈ "Hardware Scripting Language"
- Design composed of units that send messages over channels via ports
- Units (10,000 + gates)
 CPU + L1 cache, DRAM controller...
- Channels (≈ FIFO)
 - Lossless, point-to-point, unidirectional, in-order delivery...
- Generates HDL to connect units

RDL at technological sweet spot

- Matches current chip design style
 - □ Locally synchronous, globally asynchronous
- To plug unit (in any HDL) into RAMP infrastructure, just add RDL "wrapper"
- Units can also be in C or Java or System C or ... \Rightarrow Allows debugging design at high level
- Compiles target interconnect onto RAMP paths
 Handles housekeeping of data width, number of transfers
- FIFO communication model
 - \Rightarrow Computer can have deterministic behavior
 - □ Interrupts, memory accesses, ... exactly same clock cycle each run
 - \Rightarrow Easier to debug parallel software on RAMP

RDL Developed by Krste Asanovíc and Greg Giebling

Related Approaches

Quickturn, Axis, IKOS, Thara:

- □ FPGA- or special-processor based gate-level hardware emulators
- Synthesizable HDL is mapped to array for cycle and bit-accurate netlist emulation
- RAMP's emphasis is on emulating high-level architecture behaviors
 - Hardware and supporting software provides architecturelevel abstractions for modeling and analysis
 - Targets architecture and software research
 - Provides a spectrum of tradeoffs between speed and accuracy/precision of emulation
- RPM at USC in early 1990's:
 - □ Up to only 8 processors
 - □ Only the memory controller implemented with configurable logic

RAMP's Potential Beyond Manycore

- Attractive Experimental Systems Platform: Standard ISA + standard OS + modifiable + fast enough + trace/measure anything
 - □ Generate Long Traces of Full Systems
 - Test Hardware Security Enhancements
 - □ Inserting Faults to Test Availability Schemes
 - Test design of switches and routers
 - □ SW Libraries for 128-bit floating point
 - \Box App-specific instruction extensions (\approx Tensilica)
 - □ Alternative Data Center designs
 - Akamai vs. Google: N centers of M computers

RAMP's Potential to Accelerate MPP

- With RAMP: Fast, wide-ranging exploration of HW/SW options + head-to-head competitions to determine winners and losers
 - \square Common artifact for HW and SW researchers \Rightarrow innovate across HW/SW boundaries
 - □ Minutes vs. years between "HW generations"
 - \Box Cheap, small, low power \Rightarrow Every dept owns one
 - □ FTP supercomputer overnight, check claims locally
 - \Box Emulate any MPP \Rightarrow aid to teaching parallelism
 - □ If IBM, Intel, ...had RAMP boxes
 - \Rightarrow Easier to carefully evaluate research claims
 - \Rightarrow Help technology transfer
- Without RAMP: One Best Shot + Field of Dreams?

Multiprocessing Watering Hole

Dataflow language/computer Data center in a box Parallel file system Fault insertion to check dependability Router design Compile to FPGA Flight Data Recorder Security enhancements Transactional Memory Internet in a box 128-bit Floating Point Libraries Parallel languages

- Killer app: \approx All CS Research, Advanced Development
- RAMP attracts many communities to shared artifact \Rightarrow Cross-disciplinary interactions

 - \Rightarrow Ramp up innovation in multiprocessing
- RAMP as next Standard Research/AD Platform? (e.g., VAX/BSD Unix in 1980s)

Supporters and Participants

- Gordon Bell (Microsoft)
- Ivo Bolsens (Xilinx CTO)
- Jan Gray (Microsoft)
- Norm Jouppi (HP Labs)
- Bill Kramer (NERSC/LBL)
- Konrad Lai (Intel)
- Craig Mundie (MS CTO)
- Jaime Moreno (IBM)
- G. Papadopoulos (Sun CTO)
- Jim Peek (Sun)
- Justin Rattner (Intel CTO)

- Michael Rosenfield (IBM)
- Tanaz Sowdagar (IBM)
- Ivan Sutherland (Sun Fellow)
- Chuck Thacker (Microsoft)
- Kees Vissers (Xilinx)
- Jeff Welser (IBM)
- David Yen (Sun EVP)
- Doug Burger (Texas)
- Bill Dally (Stanford)
- Susan Eggers (Washington)
- Kathy Yelick (Berkeley)
- **RAMP Participants:** Arvind (MIT), Krste Asanovíc (MIT), Derek Chiou (Texas), James Hoe (CMU), Christos Kozyrakis (Stanford), Shih-Lien Lu (Intel), Mark Oskin (Washington), David Patterson (Berkeley, Co-PI), Jan Rabaey (Berkeley), and John Wawrzynek (Berkeley, PI)

Conclusions

Carpe Diem: need RAMP yesterday

- □ System emulation + good accounting vs. FPGA computer
- □ FPGAs ready now, and getting better
- □ Stand on shoulders vs. toes: standardize on BEE2
- □ Architects aid colleagues via gateware

RAMP accelerates HW/SW generations

- □ Emulate, Trace, Reproduce anything; Tape out every day
- \square RAMP \Rightarrow search algorithm, language <u>and</u> architecture space

Multiprocessor Research Watering Hole"

Ramp up research in multiprocessing via common research platform \Rightarrow innovate across fields \Rightarrow hasten sea change from sequential to parallel computing

Backup Slides

Why RAMP More Believable?

- Starting point for processor is debugged design from Industry in HDL
- HDL units implement operation vs. a highlevel description of function
 - Model queuing delays at buffers by building real buffers
- Must work well enough to run OS
 - \Box Can't go backwards in time, which simulators can
- Can measure anything as sanity checks

Why RAMP Now?

FPGAs kept doubling resources / 18 months

- 1994: N FPGAs / CPU, 2005
- □ 2006: 256X more capacity \Rightarrow N CPUs / FPGA
- We are emulating a target system to run experiments, not "just" a FPGA supercomputer
- Given Parallel Revolution, challenges today are organizing large units vs. design of units
- Downloadable IP available for FPGAs
- FPGA design and chip design similar, so results credible when can't fab believable chips

RAMP Development Plan

- 1. Distribute systems internally for RAMP 1 development
 - Xilinx agreed to pay for production of a set of modules for initial contributing developers and first full RAMP system
 - Others could be available if can recover costs
- 2. Release publicly available out-of-the-box MPP emulator
 - Based on standard ISA (IBM Power, Sun SPARC, ...) for binary compatibility
 - Complete OS/libraries
 - Locally modify RAMP as desired
- 3. Design next generation platform for RAMP 2
 - Base on 65nm FPGAs (2 generations later than Virtex-II)
 - Pending results from RAMP 1, Xilinx will cover hardware costs for initial set of RAMP 2 machines
 - Find 3rd party to build and distribute systems (at *near-cost*), open source RAMP gateware and software
 - Hope RAMP 3, 4, ... self-sustaining
 - NSF/CRI proposal pending to help support effort
 - 2 full-time staff (one HW/gateware, one OS/software)
 - Look for grad student support at 6 RAMP universities from industrial donations

RAMP Example: UT FAST

- 1MHz to 100MHz, cycle-accurate, full-system, multiprocessor simulator
 - Well, not quite that fast right now, but we are using embedded 300MHz PowerPC 405 to simplify
- X86, boots Linux, Windows, targeting 80486 to Pentium M-like designs
 - □ Heavily modified Bochs, supports instruction trace and rollback
- Working on "superscalar" model
 - □ Have straight pipeline 486 model with TLBs and caches
- Statistics gathered in hardware
 - □ Very little if any probe effect
- Work started on tools to semi-automate microarchitectural and ISA level exploration
 - Orthogonality of models makes both simpler

Derek Chiou, UTexas

Example: Transactional Memory

- Processors/memory hierarchy that support transactional memory
- Hardware/software infrastructure for performance monitoring and profiling

□ Will be general for any type of event

Transactional coherence protocol

Example: PROTOFLEX

- Hardware/Software Co-simulation/test methodology
- Based on FLEXUS C++ full-system multiprocessor simulator

Can swap out individual components to hardware

Used to create and test a non-block MSI invalidation-based protocol engine in hardware

Example: Wavescalar Infrastructure

- Dynamic Routing Switch
- Directory-based coherency scheme and engine

Example RAMP App: "Enterprise in a Box"

- Building blocks also \Rightarrow Distributed Computing
- RAMP vs. Clusters (Emulab, PlanetLab) \Box Scale: RAMP O(1000) vs. Clusters O(100) \square Private use: \$100k \Rightarrow Every group has one Develop/Debug: Reproducibility, Observability □ Flexibility: Modify modules (SMP, OS) □ Heterogeneity: Connect to diverse, real routers Explore via repeatable experiments as vary parameters, configurations vs. observations on single (aging) cluster that is often idiosyncratic