

The Next Generation 65-nm FPGA

Steve Douglass, Kees Vissers, Peter Alfke Xilinx August 21, 2006

Structure of the talk

- 65nm technology going towards 32nm
- Virtex-5 family
- Improved I/O
- Benchmarking Virtex-5 LUT6 fabric
- New Microblaze in Virtex-5 fabric
- Conclusion

65nm Process Technology

- 40-nm gate length (physical poly)
- 1.6nm oxide thickness (16 Angstrom)
 - ~5 atomic layers
- Triple-Oxide II technology
 - 3 oxide thicknesses for optimum power and performance
- 1.0 Vcc core
 - Lower dynamic power
- Mobility engineered transistors (strained silicon)
 - Maximum performance at lowest AC power

Over 1 Billion Transistors on a 23 x 23 mm Chip

FPGAs Drive the Process

The cost of IC development increases. Therefore customers want to buy reconfigurable and programmable platforms, instead of developing their own.

Challenges

- Higher leakage current and stand-by power
- Lower Vcc: good for power, tough for decoupling
 - 3.3-V compatibility is getting more difficult
 - 1 billion transistors, large chips, heat density
 - 12-layer chip, 10-layer package, 16-layer pc-board
- Faster transitions, 2 V/ns and 50 mA/ns per pin,
 Pc-board signal integrity problems

Complex chip, complex package, complex board

LX Platform Overview

Two Generations of ASMBL (Application-Specific Modular BLock Architecture)

Virtex-4

Virtex-5

2nd Generation of ASMBL

Easy to create sub-families

- LX : Logic + parallel IO
- LXT: Logic + serial I/O
- SXT: DSP + serial I/O
- FXT: PPC + fastest serial I/O

LXT LX Four Platforms FXT SXT

Many choices to optimize cost and performance

System components

Virtex-5 Logic Architecture

• True 6-input LUTs

- with dual 5-input LUT option
- 1.4 times the value for actual logic
- only 1.15 times the cost in silicon are
- 64-bit RAM per M-LUT
 - about half of all LUTs
- 32-bit or 16-bit x 2
 shift register per M-LUT

BRAM/FIFO

- 36 Kbit BRAM
 - Integrated FIFO Logic for multi-rate designs
 - Built-in ECC
 - Cascadable to build larger RAM arrays
 - Dual Port: a read and write every clock cycle
- Performance up to 550 MHz

General Purpose I/O (Select I/O)

- All I/O pins are "created equal"
- Compatible with >40 different standards
 - Vcc, output drive, input threshold, single/differential, etc
- Each I/O pin has **dedicated circuitry** for:
 - On-chip transmission-line termination (serial or parallel)
 - Fine timing adjustment in 75 ns steps (IDELAY + ODELAY)
 - Serial-to-parallel converter on the input (CHIPSYNC)
 - Parallel -to-serial converter on the output (CHIPSYNC)
 - Clock divider, and high-speed "regional" clock distribution

Ideal for source-synchronous I/O up to 1 Gbps

75-ps Incremental Alignment

- Calibration clock can be internal or external
- 64 delay elements of ~ 70 to 89 ps each

ISERDES for Incoming Data

- Clock frequency division widens internal data path
 - n = 2, 3, 4, 5, 6, 7, 8, 10 bits
- Dynamic signal alignment
 - Bit alignment, Word alignment, Clock alignment
- Supports Dynamic Phase Alignment (DPA) using IDELAY

OSERDES for Outgoing Data

- Parallel-to-Serial converter
 - Data SERDES: 2, 3, 4, 5, 6, 7, 8, 10 bits
 - Three-state control SERDES: 1, 2, 4 bits

Virtex-5 Applications Benchmarks

One MPEG4 Video Decoder

8 MPEG4 decoders

8 Decoders: Resources

Design	Virtex-4	Virtex-5
Resources		
	Used	Used
Registers	21,248	20,242
LUTs	67,523	44,148
BlockRAMs	233	233
DSP Elements	192	216

- 35% fewer LUTs
- dramatic improvements for multiplexers, memory, and misc. logic
- Same VHDL source code used for both designs

Logic Synthesis-Driven Results

Virtex-5 Virtex-4

Number of Inputs

- Synthesis uses 6-input LUTs efficiently : fewer logic levels
- 23% increase in synthesized frequency, from 95MHz to 117MHz
- From 720p to 1080p video standards with little effort

Quad-Port Memory in Four LUT6

- Write Port: Four LUT6s share the data input and can also share a distributed write address
- Read Ports: Three independent read operations
- 32 x 32 Quad-Port RAM structure in 64 LUTs
- 6x density improvement over Virtex-4

Application Example: new MicroBlaze 5.0

- Better use of new LUTs
 - 1269 LUT4s in Virtex-4, MB 4.0
 - 1400 LUT6s in Virtex-5, MB 5.0
- from 3 stage -> 5 stage pipeline

- new processor: from 0.92 DMips/MHz to 1.14 DMips/MHz
- 180MHz -> 201 MHz
- 166 -> 230 Dhrystone Mips

Use new 6 LUT, 2 stage deeper pipe, 10% more MHz, 39% better performance

Suite of Benchmarks

Suite of 74 designs run against ISE8.1i Slow speedgrade (-10) Virtex-4 compared to slow speedgrade (-1) Virtex-5

~30% average advantage for Virtex-5 fabric vs. Virtex-4

- As high as 56% advantage for some designs

Virtex-5: Summary

- Leading 65 nm technology FPGA platform
- Better input and output I/O on all pins
- New 6-input LUT logic that is 30% better
- Demonstrated example of video benchmark with 35% fewer LUTs and 23% increased frequency
- New Microblaze with 39% improved performance
- Expect more: new announcements on serial I/O and integrated processor technology very soon

Appendix: Virtex-5 LX

Virtex-5 LX Platform

		5VLX30	5VLX50	5VLX85	5VLX110	5VLX220	5VLX330	
Logic Cells		30,720	46,080	82,944	110,592	221,184	331,776	
LUT6/FFs		19,200	28,800	51,840	69,120	138,240	207,360	
Distributed RAM Kbits		320	480	840	1,120	2,280	3,420	
Block RAM Kbits		1,152	1,728	3,456	4,608	6,912	10,368	
CMTs		2	6	6	6	6	6	
DSP48E Slices		32	48	48	64	128	192	
Total I/O Banks		13	17	17	23	23	35	
EasyPath		No	No	Yes	Yes	Yes	Yes	
Package	Size	IO						
FF324	19	220	220	220				
FF676	27	440	400	440	440	440		
FF1153	35	800		560	560	800		
FF1760	42.5	1,200				800	800	1,200

