Home entertainment-quality multimedia experience whilst on the move

-Philips Nexperia[™] Mobile Multimedia Processor PNX4103

Marcin Klecha, Ralf Karge, Richard O'Connor Philips Semiconductors

Acknowledgements

The PNX4103 represents the work of more than 100 engineers from Philips Semiconductors in:

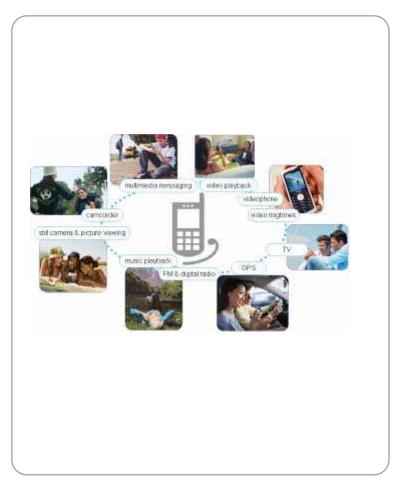
• France

- : Sophia Antipolis, Caen
- The Netherlands : Nijmegen, Eindhoven
- India
- UK
- USA
- : Bangalore
- : Redhill
- : San Jose

Contents

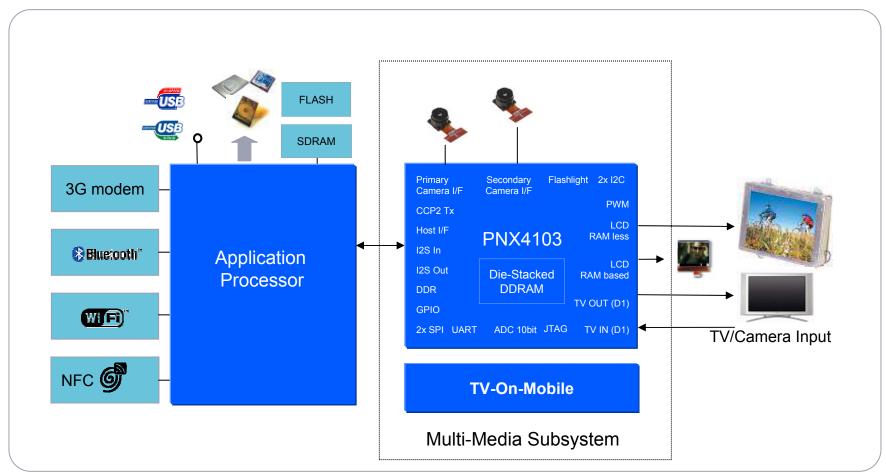
- Requirements of the next generation mobile phones
- System Architecture
- Video Engine & Imaging Processor
- Power Management Framework
- PNX4103 Silicon
- Conclusions

Quiz

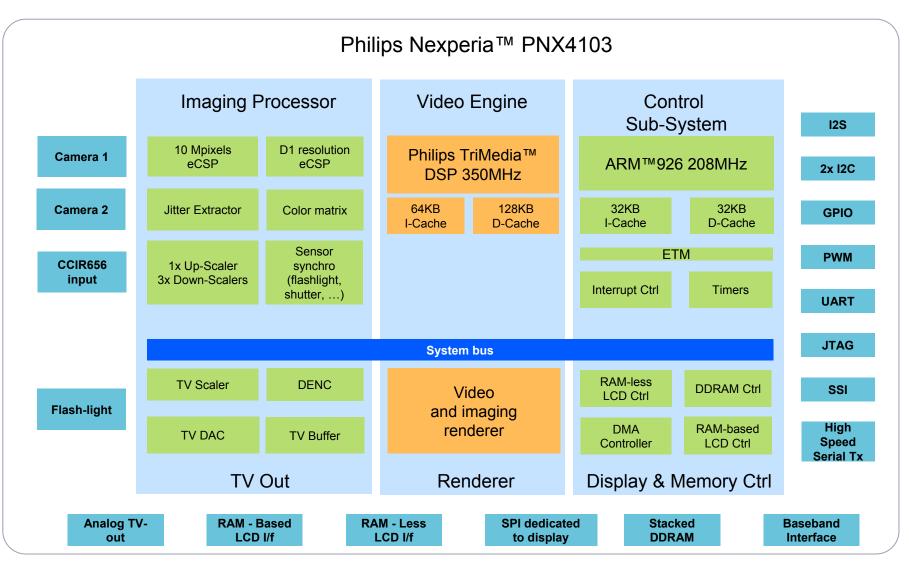

- Would you use your mobile phone as the only camera at your daughter's wedding ?
- □ Would you use your mobile phone to download a movie, connect to your new HD TV with Dolby-Digital 5.1 and invite your friends over?
- □ Would you use your mobile phone to record the World Cup Finals?

Well ... That'd be our target for the PNX4103

Requirements For the Future Mobile Phones


 Building a Mobile Phone of tomorrow is like shrinking the entire entertainment system of a Living Room, Car Infotainment system and Digital Camera altogether

Additional functionality with the same, plain, old mobile phone battery



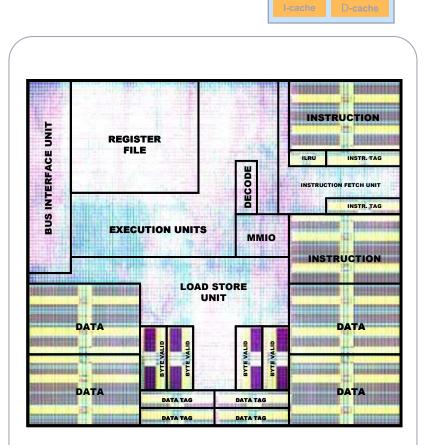
System Architecture of a Mobile Phone

PNX4103 is addressing the Multi-Media part of a Mobile Phone

Philips Nexperia[™] Mobile Multimedia Processor

Philips Semiconductors © 2006, All rights reserved

Video Engine *Media Processor TM3270*


- Design Goals:
 - Multi-purpose programmable solution
 - Standard video/audio (en/de)-coders like
 - H.264 standard definition encode or decode
 - MPEG2, WMV high definition decode
 - Proprietary video enhancement processing to improve picture quality
 - Many applications evolve after HW designs complete
 - Programmable solution => Fast time-to-market
 - Easy to program in standard C/C++
 - Multi-market (stationary and mobile devices)
 - Share development costs (CPU, software and tools development)
 - Suitable for low power (battery operated products) and slow memories

Enough Programmable Performance @ Acceptable Power Consumption within Smallest Possible Silicon Area

Video Engine TM3270 Main Characteristics

- Fully synthesizable design (450/350 MHz)
- VLIW machine with 5 issue slots
- 32-bit address range, 32-bit datapath
- Operations are guarded
- Unified 128x32-bit register-file
- 35 execution units
- SIMD multimedia and IEEE754 FP operation support
- 64 Kbyte instruction cache (8-way set associative)
- 128 Kbyte data cache (4-way set associative)
- Variable length instruction encor
- Pipeline depth 7-12 stages

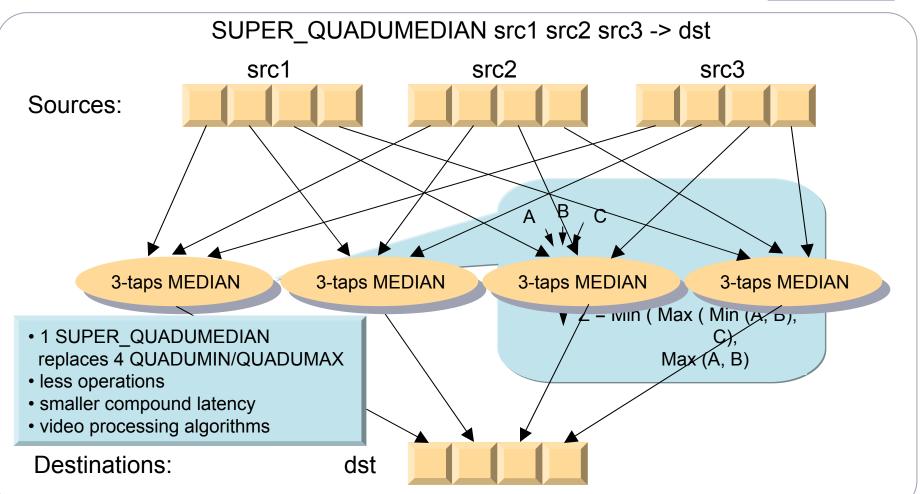
if r34	fadd	rl2rl4	-> r56,
if r24	fmul	r3 r89	-> r112,
	add	r34 r76	-> r 2 ,
	std32d(4)	r42 r48,	
if r21	ld32d(-8)	r93	-> r45;

Video Engine

TM3270 (8.08 mm²)

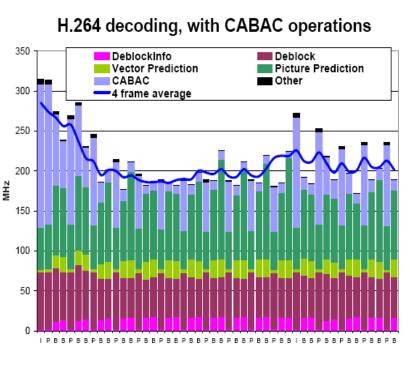
Philips Semiconductors © 2006, All rights reserved

Video Engine TM3270 Architecture Highlights



Essential improvements in order to meet the design goals:

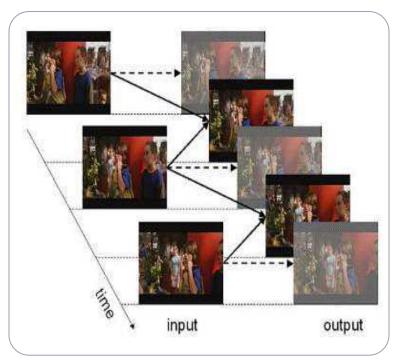
- Instruction Set Extensions
 - Two-slot operations
 - Fractional Load operations Loads with on-the-fly filtering
 - H.264 CABAC (Context Adaptive Binary Arithmetic Coding) decoding operations
- Data cache / Prefetching
 - Pre-fetching "to hide" SDRAM latency in SoC environment
 - Pre-fetching based on "memory regions"
 - Memory regions are under software control
 - Non-aligned accesses
 - Allocate-on-write-miss policy
 - Selected cache size with the "right" system balance between area and performance
- Extensive usage of clock gating (170 domains in total)


Video Engine Example of a two-slot Operation

Video Engine CABAC Operations – H.264 Decoder Profile

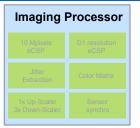
- SUPER_CABAC_CTX
 - CABAC Decode, Calculate new context info
 - Input:
 - value, range, state, mps, bit_position, data
 - Output:
 - value, range, state, mps
- SUPER_CABAC_STR
 - CABAC Decode, Calculate new stream info
 - Input:
 - value, range, state, mps, bit_position
 - Output:
 - bit_position, bit
- Performance speedup in CABAC processing: factor 1.5 – 1.7

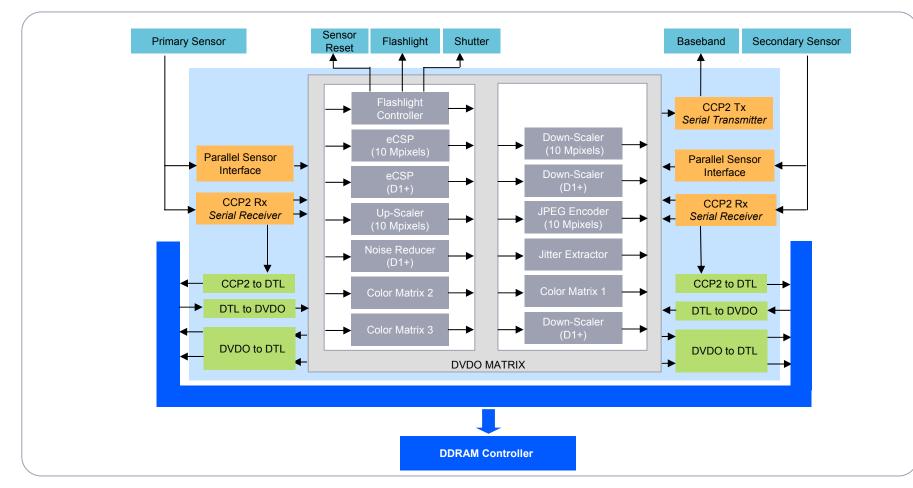
- H.264 CABAC 2.5 Mbits/s encoded bit-stream
- 720*576 resolution @ 25 frames/s
- 80% of 16x16 blocks decomposed into sixteen 4x4 blocks


Video Engine Video Improvement Algorithms

- TM3270 Architecture is also optimized for video improvement algorithms
- Lower bit-rate video streams (low resolution or frame rate) leave more TriMedia cycles for improvement algorithms and can be displayed at comparable video quality

Mobile Natural Motion

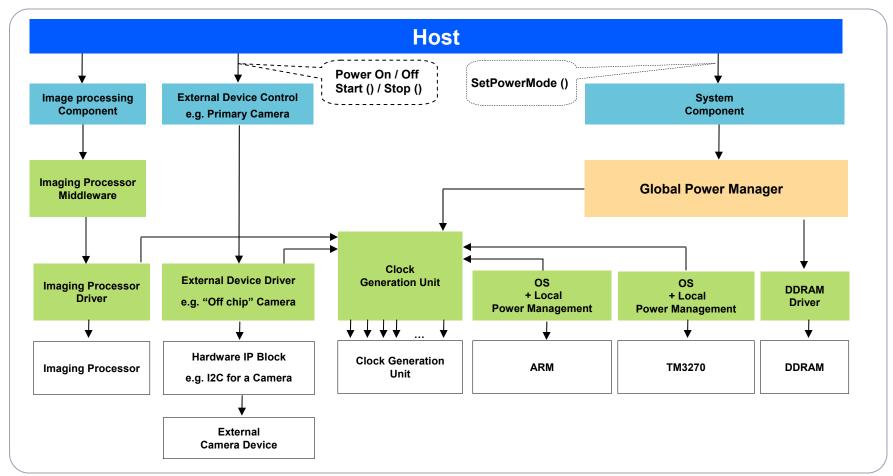

- Improves video playback quality
- Complete software solution
 - Motion Estimation
 - Motion-Compensated Temporal Up Conversion of Chroma and Luma
- Takes less than 10% of TM3270 cycles on PNX4103



Imaging Processor Block Diagram

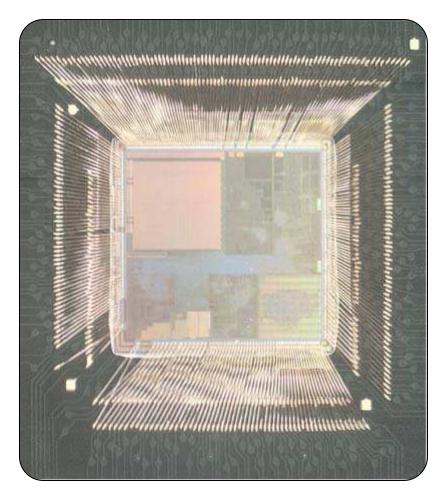
Imaging Processor Main Characteristics

- Scalable streaming architecture
 - Central "switch" called DVDO Matrix acts as a MUX with clock-domain crossing
 - Processing blocks simply connect to the matrix
 - Processing chain is constructed by programming matrix
 - Independent clock frequencies (clock-domain crossing in matrix)
- Two simultaneous camera inputs
 - High and low resolution cameras
 - Internal parallel video pipes are possible
- Down-scalers work in streaming mode reduce power
- Parallel and serial (sub-LVDS) camera interfaces


Power management framework PNX4103 Low Power Design

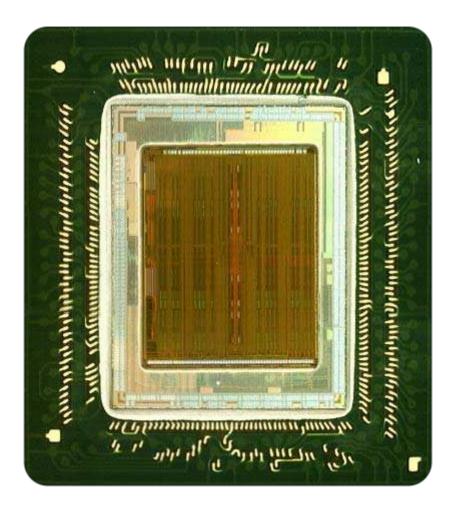
- General principles
 - Most logic designed using High-Vt transistors for low leakage
 - Central Clock Generation Unit (CGU) with over 100 independently controllable clocks
 - Independent clock domains allowing fine frequency control (switching and scaling) on the individual clocks
 - Auto-clock gating in many blocks
 - Two power down modes for TM3270
 - self-induced partial power-down and external-induced full power-down
 - Dynamic Voltage scaling for TM3270
- Control of leakage
 - TriMedia is 100% implemented in Standard-Vt transistors
 - High performance
 - High(er) leakage
 - Separate power supply (voltage domain) for TriMedia removes leakage when TriMedia is not needed

Power management framework Software Aspects



Power-management incorporated into software driver framework

PNX4103 Silicon Characteristics


- Process
 - Low power 90nm
 - Operating voltage 1.2V
- Package
 - 10 x 10 mm LFBGA256
- Typical Power Consumption
 - TriMedia 1.0 mW/MHz
 - ARM 0.6 mW/MHz

PNX4103 Silicon Characteristics Die-Stacked Memories

- The package contains a 128Mbit die-stacked LP-DDR
- The power consumption minimized due to limited off chip communication
- Reduced size of the overall system solution

Conclusions

- PNX4103 is following Philips Platform approach based on a Dual Core Architecture that was deployed already in TV and STB
- Low Power implementation of the TriMedia DSP enables the home entertainment quality multimedia on mobile devices
- Programmable design offers system upgradeability and flexibility in designing next generation consumer products
- Imaging Processor for High Quality Video Recording and Still Images

 no need for additional camera in your pocket ⁽²⁾
- Small form factor due to die-stacked memories
- Designed as a co-processor allowing an easy upgrade path for enhanced imaging and video capabilities on mobile phones

Quiz – answers!!!

Would you use your mobile phone as the only camera at your Daughter's wedding ?

✓ YES

□ Would you use your mobile phone to download a movie, connect to your new HD TV with Dolby-Digital 5.1 and invite your friends over?

✓YES

□ Would you use your mobile phone to record the World Cup Finals?

✓ YES

