HOTCHIPS 2006

Heterogeneous multiprocessing for efficient multi-standard high definition video decoding

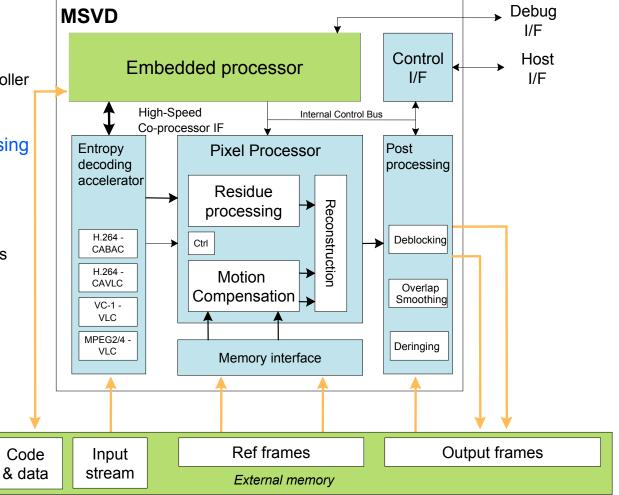
Philips Semiconductors © 2006, All rights reserved

Outline

- Multi-Standard Video Decoder overview
 - Internal system architecture
- Design challenges
 - CPU performance
 - Customized TriMedia VLIW core
 - Programmable pixel processing
- Results & Conclusion

MSVD charter

- Integrated video decoding solution for consumer application
 - Support for common video compression formats in the consumer world
 - Up to high definition resolution
 - Concurrent stream decoding
 - Supporting consumer encoded ' almost compliant ' material
 - Advanced trick modes
 - Advanced post processing for best in class picture quality
 - Competitive against fully hardwired solutions


MSVD system feature list (1)

- Supported formats
 - H.264 (aka MPEG4 AVC or MPEG4 part 10) High Profile @ Level4 (1920x1080 60Hz interlaced or 1080i, 1280x720 60Hz progressive or 720p)
 - VC-1 (WM9) Advanced Profile @ Level 3 (1080i, 720p)
 - MPEG4 Advanced Simple Profile @ Level3 (1080i, 720p)
 - DivX 3.11/ 4.x.x / 5.x.x / 6 HD profile
 - MPEG1/2 Main Profile @ High Level (1080i, 720p)
 - DV / DVCAM / DVCPRO-25 @ 25 Mbits/s
 - JPEG EXIF2.2 format up to 8192x8192
- Video post-processing
 - Deblocking
 - Deringing

MSVD system overview

• Control / parsing in firmware

- Running on embedded controller
- low amount of control glue
- HW assistance for stream parsing
 - Performance independent of bit rate
- Autonomous pixel crunching
 - Using a set of dedicated units
 - HD level performance at consumer cost

MSVD system overview

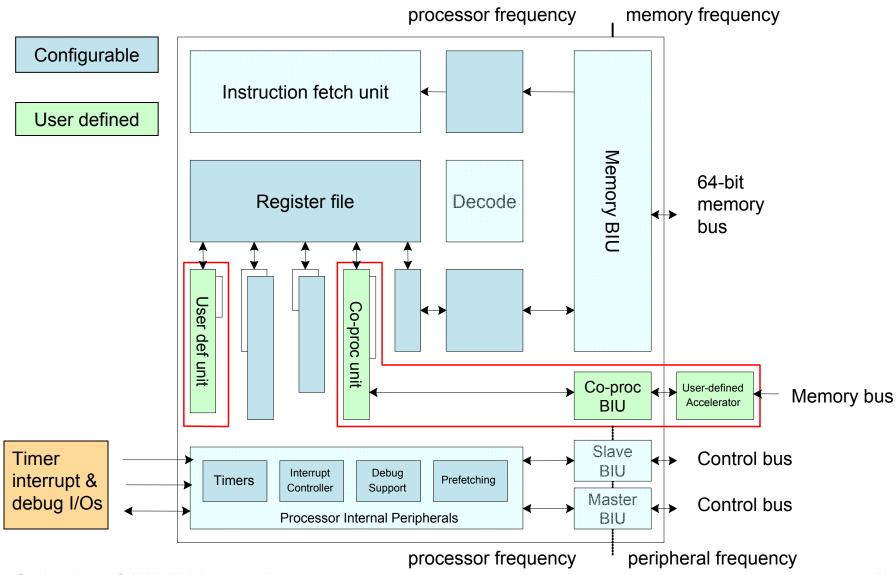
- Benefits
 - Good range of standard decoders in limited Si area
 - High decoding throughput
 - Easier support for non compliant streams (PC world)
 - Field upgradeable firmware
 - Possibility to tweak error concealment / playability
 - Possibility to expand supported formats
 - If using similar pixel crunching functions as already supported codecs (e.g. MPEG4 variants: DivX/Xvid)
 - Scalable
 - Reduced set of standard
 - Low operating frequency for low power standard definition decoding
 - Choice of embedded controller

Outline

- Multi-Standard Video Decoder overview
 - Internal system architecture
- Design challenges
 - CPU performance
 - Customized TriMedia VLIW core
 - Programmable pixel processing
- Results & Conclusion

CPU performance - Requirements (1)

- Origin of coding efficiency improvements
 - Deeper picture segmentation
 - Down to 4x4 blocks
 - Sophisticated prediction scheme
 - Most symbols are predicted
 - Adaptive selection of predictor for each symbol
 - Advanced entropy coding techniques
 - Arithmetic coding / Multiplication of Huffman tables (VC-1)
 - Most symbols are now predicted and not simply transmitted in bit stream (I.e. MB type/CBP/QP)
- Consequence
 - More symbols to decode
 - Steep increase in computation and data manipulation required for decoding a symbol
 - Example motion vectors prediction
 - 1 load / 1 store per MV, up to 4 MVs per MB in MPEG2
 - 12 load / 3 store / 3 compare per MV, up to 32 MV's per MB in H.264

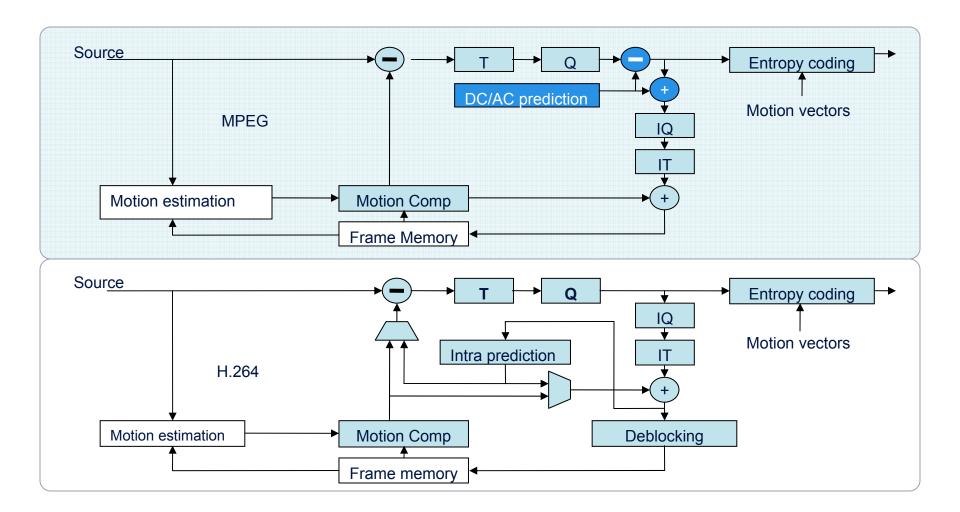

CPU performance - Requirements (2)

- High impact on stream parsing complexity
 - 8x more performance required from MPEG2 to H.264
- Parsing Performance requirements for 1080i
 - MB rate: 245760 MB/s
 - 1354 cycles / MB @ 333MHz
 - 6 cycles/symbol (incl. 384/2 transform coefficient)
 - Complexity (excluding transform coefficient parsing)
 - 700 load / store operations / MB for context manipulation
 - Total of 3000 ops / MB
 - High level of execution hazards (100 branches)

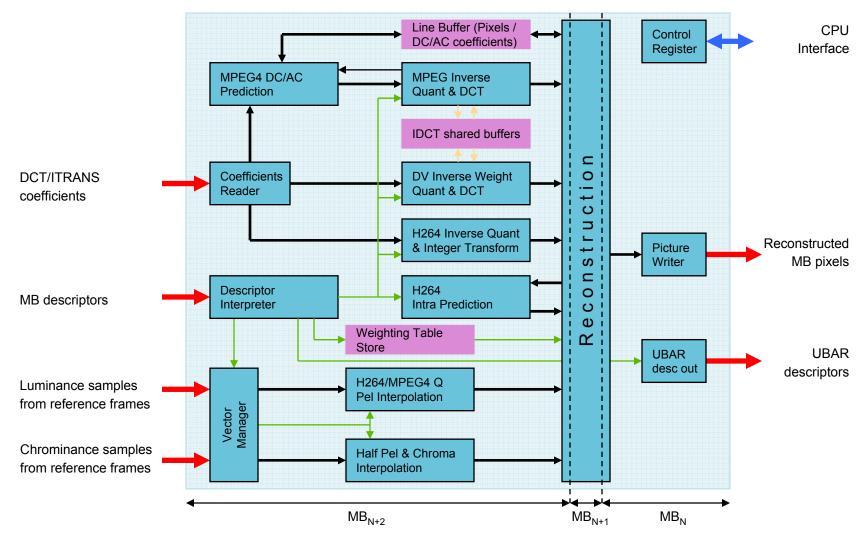
CPU performance - TM Config

- Configurable TriMedia processor
 - Based on TM3270 architecture
 - 5 issue slot VLIW architecture
 - 35 functional units
 - 9 stage pipeline
 - Configurable
 - Instruction cache: 32kB
 - Data cache: 16kB
 - Register file size: 96 General Purpose Registers
 - Dedicated coprocessor interface
 - Compiler supports optimal scheduling of accesses
 - Customizable function unit: SIMD instructions
 - Dual operation for MV handling (dual add/median)
 - Parallel LOAD and STORE unit
 - 1 load and 1 store per cycle
 - Increase parallelism by reducing pressure on the load / store unit

VLIW TriMedia Configurable Core

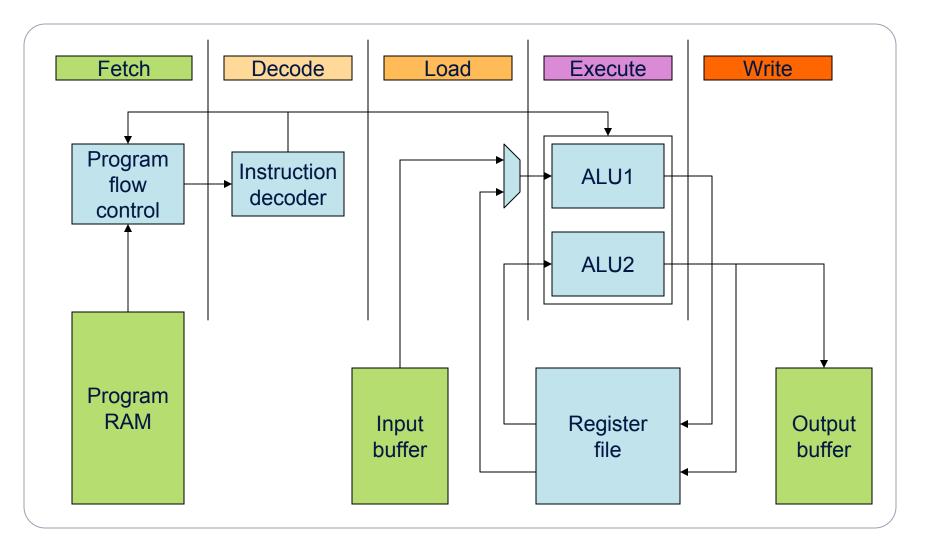

TM Config - Coprocessor BIU

- Connected to Entropy Decoding Accelerator
 - Primitives :
 - rd_bits(n) / rd_uvlc(n) / rd_cabac_symbol(ctx0,ctx1,...)
- Load/Store programmer's interface:
 - cop_ld32r, cop_ld32r, cop_ld32x, cop_st32d
- Configurable coprocessor load / store latency
 - Latency set to 7 cycles for LD / 4 cycles for ST
 - Scheduling support in compiler tool chain for 0 overhead access
- Drastically reduces stalls on co-processor accesses
 - 15 % performance gain compared to normal BIU


TM Config – User defined unit

- Customizable SIMD unit in CPU pipeline
 - Up to 4 32-bit sources / Up to 2 32-bit destinations
 - Full compiler support
 - RTL module inserted at synthesis time
- Examples of usage
 - H264 motion prediction
 - Motion vector scaling
 - H264 delta motion vector context computation
- Benefits
 - Parallelism of SIMD (e.g. (X,Y) computed in single step)
 - Removal of low level branches
 - Very damaging for efficient scheduling on VLIW with long pipeline

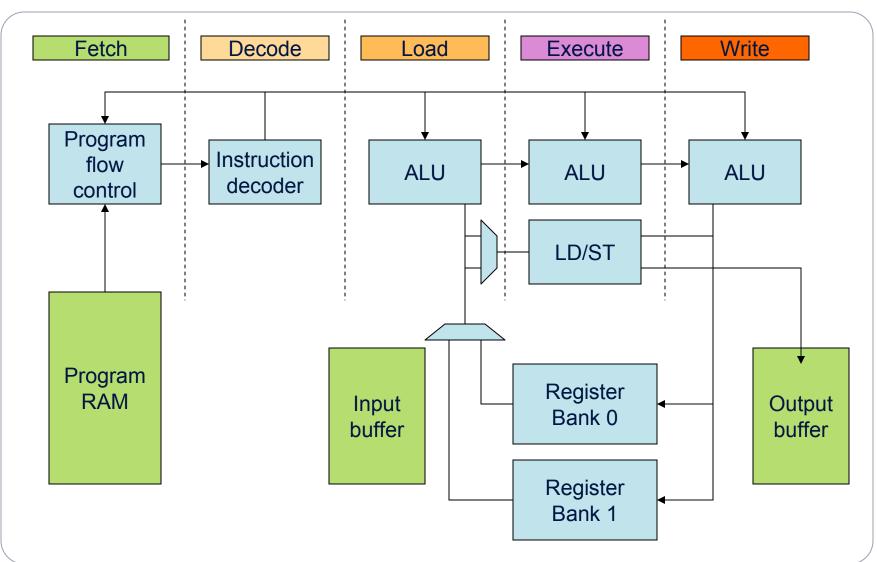
Pixel processing challenges



Pixel processing challenges

- Same principles used for video compression
 - Transform based residue / intra coding
 - Quantization
 - Combination of motion prediction and residue
 - Filtering for motion predictors
 - Deblocking
- But different processes and implementation
- Consequence for a multi standard solution
 - Hardwired solutions become complex
 - Resource sharing is possible but increase verification effort
 - Symmetric multi processing is not efficient
 - Diversity of algorithms defeats architecture optimization
 - Scheduling is an issue due to increasing data dependency

- Example: Transform
 - MPEG started with 8x8 IDCT but over time
 - Different shapes
 - Different dynamic range / rounding
 - Integer transforms
 - Complexity
 - 23.6 M 1D transform / s for MPEG2 HD
 - Operations for 1D DCT
 - 50 operations including 8 input loads + 8 output writes
 - Budget: 8 cycles at 200 MHz
 - Need for a dedicated processor structure removing overhead of typical architectures
 - Direct access to data is key to achieve performance and efficiency



Programmable pixel processors

Solution

- Dual issue 5 stages ASIP core
- Direct input / output buffer access
- 24 general purpose registers
- 2 ALUs
 - Single cycle butterfly op
 - Load / butterfly op
 - Butterfly, round and store op
- Zero overhead loop support
- Different transforms supported by
 - Adjusting coefficients in GPR for butterfly ops
 - Changing loop limits (shapes)
 - Adjusting rounding parameters (in dedicated registers)
- Performance
 - MPEG DCT in 112 cycles (7 cycle / 1D IDCT)
 - H.264 4x4 transform in 16 cycles

- Results
 - Hardwired solution for 5 standards : 0.2 mm2 in 90 nm LP
 - Programmable engine : 0.12 mm2 in 90 nm LP
- Other application : deblocking
 - VC-1 has 2 deblocking mechanisms, overlap transform and deblocking filter
 - Control in hardware is possible but difficult to mature
 - New unit is implemented as a programmable engine with Lisatek tool suite from CoWare
 - Pipelined filter operation
 - Control moved to firmware
 - Improvement in debug time for no area penalty
 - Area improves as other deblocking algorithms are mapped onto the same processor

Outline

- Multi-Standard Video Decoder overview
 - Internal system architecture
- Design challenges
 - CPU performance
 - Customized TriMedia VLIW core
 - Programmable pixel processing
- Results & Conclusion

Results - MSVD key figures

- Hardware characteristics
 - All figures are in 90 nm low power process
 - CPU core operating @ 333 MHz (soft core)
 - 5 issues VLIW architecture + support for SIMD
 - 32/16 kB I/D cache
 - Customized instructions and 0 overhead coprocessor
 - Area 3.2 mm2 including caches
 - MSVD core operating @ 166 MHz
 - Area 3.70 mm²
 - Total area 6.9 mm²

Conclusion

- · Efficient multi-standard HD solution achieved by
 - Proper partitioning of tasks
 - Usage of customized CPU core associated with closely coupled and loosely coupled dedicated processing units
- Preserve a good deal of flexibility at HD level performance
 - Wide range of standards supported
 - Capability to deal with variants (e.g. DivX x.xx)
 - Error concealment strategy in SW
- Programmable computation engines bring flexibility, design time and area reduction

