
8/20/2006 Transactional memory1

Agenda

Multithreaded Programming

Transactional Memory (TM)

� TM Introduction

� TM Implementation Overview

� Hardware TM Techniques

� Software TM Techniques

Q&A 



Bratin Saha
Programming Systems Lab

Intel Corporation

Software Transactional Memory



8/20/2006 Transactional memory3

Outline

Software Transactional Memory

� Translating a language construct

� Runtime support 

� Compiler support

Hybrid Transactional Memory

Open issues & conclusions



8/20/2006 Transactional memory4

Compiling Atomic

…

A = 5;

atomic {

B = A + 5;

}

C = B;

…

A = 5;

stmStart();

temp = stmRead(A);

stmWrite(B, temp + 5);

stmCommit();

C = B;

Transactional memory accessed via STM read & write functions

� Compiler inserts appropriate calls

� Code generation, control flow, optimizations in later slides

STM tracks accesses & detects data conflicts



8/20/2006 Transactional memory5

Runtime Data Structures

Per-thread

� Transaction Descriptor
– Read set, write set, & log

– For validation, commit, & rollback

� Transaction Memento
– Checkpoint of transaction descriptor

– For nesting & partial rollback

Per-data

� Transaction Record (TxR)
– Pointer-sized field guarding shared data

– Track transactional state of data

� Shared: Read-only access by multiple readers

� Exclusive: write-only access by single owner



8/20/2006 Transactional memory6

Mapping Data to Transaction Records

Every data item has an associated transaction record

class Foo {

int x;

int y;

}

TxR
x
y

vtbl

TxR embedded in object
Object

granularity
(Java/C#)

Cache line
or word

granularity
(C/C++)

TxR1

TxR2

TxR3

…
TxRn

Address-based hash

into global TxR table

struct Foo {

int x;

int y;

}

x
y



8/20/2006 Transactional memory7

Implementing Atomicity: Example

We will show one way to implement atomicity in a 
STM

Uses two phase locking for writes

Uses optimisitic concurrency for reads

Illustrates how transaction records are used



8/20/2006 Transactional memory8

Example

atomic {

t = foo.x;

bar.x = t;

t = foo.y;

bar.y = t; 

}

T1

atomic {

t1 = bar.x;

t2 = bar.y; 

}

T2

hdr
x = 0
y = 0

5
hdr

x = 9
y = 7

3foo bar

Reads <foo, 3>
Reads <bar, 5>

T1

x = 9

<foo, 3>

Writes <bar, 5>

Undo <bar.x, 0>

T2 waits

y = 7

<bar.y, 0>

7

<bar, 7>

Abort

�T1 copies foo into bar

�T2 should read [0, 0] or should read [9,7]

Commit



8/20/2006 Transactional memory9

Ensuring Atomicity: Options

Optimistic Concurrency

Pessimistic Concurrency

WritesReads

Memory Ops 

Mode 

Read lock on TxR
(reader-writer lock

or reader list)

Use versioning 
on TxR



8/20/2006 Transactional memory10

Ensuring Atomicity: Options

Optimistic Concurrency

Pessimistic Concurrency

WritesReads

Memory Ops 

Mode 

- Caching effects
- Lock operations

+ Caching effects
+ Avoids lock 

operations

See Saha et al. PPoPP ‘06 paper for quantitative results



8/20/2006 Transactional memory11

Ensuring Atomicity: Options

Optimistic Concurrency

Pessimistic Concurrency

WritesReads

Memory Ops 

Mode 

Write lock 
on TxR

Buffer writes &
acquire locks at 

commit



8/20/2006 Transactional memory12

Ensuring Atomicity: Options

Optimistic Concurrency

Pessimistic Concurrency

WritesReads

Memory Ops 

Mode 

+ In place updates
+ Fast commits

+ Fast reads

- Slow commits
- Reads have to 

search for 
latest value

See Saha et al. PPoPP ‘06 paper for quantitative results



8/20/2006 Transactional memory13

Java Virtual Machine Support

On-demand cloning of methods called inside transactions

JIT compiler automatically inserts read/write barriers

� Maps barriers to first class opcodes in intermediate representation

� Good compiler representation greater optimization opportunities

� Determine conflict detection granularity on per-type basis

Garbage collection support

� Enumeration of references in STM data structures

� Filtering to remove redundant log entries

� Mappings are valid across moving GC



8/20/2006 Transactional memory14

Representing Read/Write Barriers

atomic {

a.x = t1

a.y = t2

if(a.z == 0) {

a.x = 0

a.z = t3

}

}

…

stmWr(&a.x, t1)

stmWr(&a.y, t2)

if(stmRd(&a.z) != 0) {

stmWr(&a.x, 0);

stmWr(&a.z, t3)

}

Coarse-grain barriers hide redundant locking/logging



8/20/2006 Transactional memory15

An STM IR for Optimization

Redundancies exposed:

atomic {

a.x = t1

a.y = t2

if(a.z == 0) {

a.x = 0

a.z = t3

}

}

txnOpenForWrite(a)

txnLogObjectInt(&a.x, a)

a.x = t1

txnOpenForWrite(a)

txnLogObjectInt(&a.y, a)

a.y = t2

txnOpenForRead(a)

if(a.z != 0) {

txnOpenForWrite(a)

txnLogObjectInt(&a.x, a)

a.x = 0

txnOpenForWrite(a)

txnLogObjectInt(&a.z, a)

a.z = t3

}



8/20/2006 Transactional memory16

Optimized Code

atomic {

a.x = t1

a.y = t2

if(a.z == 0) {

a.x = 0

a.z = t3

}

}

txnOpenForWrite(a)

txnLogObjectInt(&a.x, a)

a.x = t1

txnLogObjectInt(&a.y, a)

a.y = t2

if(a.z != 0) {

a.x = 0

txnLogObjectInt(&a.z, a)

a.y = t3

}

Fewer & cheaper STM operations



8/20/2006 Transactional memory17

Compiler Optimizations for Transactions

Standard optimizations

� CSE, Dead-code-elimination, …

� Careful IR representation exposes opportunities and enables optimizations 
with almost no modifications

� Subtle in presence of nesting

STM-specific optimizations

� Immutable field / class detection & barrier removal (vtable/String)

� Transaction-local object detection & barrier removal

� Partial inlining of STM fast paths to eliminate call overhead



8/20/2006 Transactional memory18

Effect of Compiler Optimizations

1P overheads over thread-unsafe baseline

Prior STMs typically incur ~2x on 1P
With compiler optimizations:

- < 40% over no concurrency control
- < 30% over synchronization

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

HashMap TreeMap

%
 O

v
e
rh

e
a
d
 o

n
 1

P Synchronized

No STM Opt

+Base STM Opt

+Immutability

+Txn Local

+Fast Path Inlining



8/20/2006 Transactional memory19

Hybrid TM: Combining HTM with STM

General approach:

– Try transaction using HTM first

– Fall back on STM if HTM aborts

– Atomic blocks multiversioned for HTM & STM execution

Accelerates simple transaction

– Small

– Flat transactions

STM-STM conflicts detected by the STM machinery

HTM-HTM conflicts detected by the HTM machinery

HTM-STM conflicts requires additional code in the HTM code path



8/20/2006 Transactional memory20

Hybrid TM: Basic Mechanism

HTMReadBarrier(addr) 
check transaction record for addr is not locked by a SW transaction
if (transaction record free) 

read the address
else 

abort

HTMWriteBarrier(addr)
check transaction record for addr is not locked by a SW transaction
if (transaction record is free) 

perform the write
increment version number to indicate HTM modification

else
abort

HTM check ensures no concurrent SW TM modification



8/20/2006 Transactional memory21

Research challenges

Performance

– Right mix of HW & SW components

– Good diagnostics & contention management

Semantics

– I/O & communication

– Nested parallelism

Debugging & performance analysis tools

System integration



8/20/2006 Transactional memory22

Conclusions

Multi-core architectures: an inflection point in mainstream SW 
development

Navigating inflection requires new parallel programming 
abstractions

Transactions are a better synchronization abstraction than locks

– Software engineering and performance benefits

Lots of research on implementation and semantics issues

– Great progress, but there are still open problems


