
@ Christos Kozyrakis 1HotChips 2006, Mult-core Programming Tutorial

Agenda

Multithreaded Programming

Transactional Memory (TM)

� TM Introduction

� TM Implementation Overview

� Hardware TM Techniques

� Software TM Techniques

Q&A

Transactional Memory

Implementation Overview

Christos Kozyrakis

Computer Systems Laboratory

Stanford University

http://csl.stanford.edu/~christos

@ Christos Kozyrakis 3HotChips 2006, Mult-core Programming Tutorial

TM Implementation Requirements

TM implementation must provide atomicity and isolation

� Without sacrificing concurrency

Basic implementation requirements

� Data versioning

� Conflict detection & resolution

Implementation options

� Hardware transactional memory (HTM)

� Software transactional memory (STM)

� Hybrid transactional memory

@ Christos Kozyrakis 4HotChips 2006, Mult-core Programming Tutorial

Data Versioning

Manage uncommited (new) and commited (old) versions of

data for concurrent transactions

1. Eager or undo-log based

� Update memory location directly; maintain undo info in a log

+ Faster commit, direct reads (SW)

– Slower aborts, no fault tolerance, weak atomicity (SW)

2. Lazy or write-buffer based

� Buffer writes until commit; update memory location on commit

+ Faster abort, fault tolerance, strong atomicity (SW)

– Slower commits, indirect reads (SW)

@ Christos Kozyrakis 5HotChips 2006, Mult-core Programming Tutorial

Eager Versioning Illustration

Begin Xaction

Thread

X: 10 Memory

Undo

Log

Write X←15

Thread

X: 15 Memory

Undo

LogX: 10

Commit Xaction

Thread

X: 15 Memory

Undo

LogX: 10

Abort Xaction

Thread

X: 10 Memory

Undo

LogX: 10

@ Christos Kozyrakis 6HotChips 2006, Mult-core Programming Tutorial

Lazy Versioning Illustration

Begin Xaction

Thread

X: 10 Memory

Write

Buffer

Write X←15

Thread

X: 10 Memory

Write

BufferX: 15

Abort Xaction

Thread

X: 10 Memory

Write

BufferX: 15

Commit Xaction

Thread

X: 15 Memory

Write

BufferX: 15

@ Christos Kozyrakis 7HotChips 2006, Mult-core Programming Tutorial

Conflict Detection

Detect and handle conflicts between transaction

� Read-Write and (often) Write-Write conflicts

� For detection, a transactions tracks its read-set and write-set

1. Eager or encounter or pessimistic

� Check for conflicts during loads or stores

HW: check through coherence lookups

SW: checks through locks and/or version numbers

� Use contention manager to decide to stall or abort

2. Lazy or commit or optimistic

� Detect conflicts when a transaction attempts to commit

HW: write-set of committing transaction compared to read-set of others
– Committing transaction succeeds; others may abort

SW: validate write-set and read-set using locks and/or version numbers

Can use separate mechanism for loads & stores (SW)

@ Christos Kozyrakis 8HotChips 2006, Mult-core Programming Tutorial

Pessimistic Detection Illustration

Case 1 Case 2 Case 3 Case 4

X0 X1

rd A

wr B

check

check

wr C

check

commit

commit

Success

X0 X1

wr A

rd A

check

check

commit

commit

Early Detect

stall

X0 X1

rd A

wr A

check

check

commit

commit

Abort

restart

rd A

check

X0 X1

rd A

check

No progress

wr A

rd A
wr A

check

restart

rd A

check

wr A

restart

rd A
wr A

check

restart

T
IM

E

@ Christos Kozyrakis 9HotChips 2006, Mult-core Programming Tutorial

Optimistic Detection Illustration

Case 1 Case 2 Case 3 Case 4

X0 X1

rd A

wr B

wr C

commit

commit

Success

X0 X1

wr A

rd A

commit

Abort

restart

X0 X1

rd A

wr A

commit

Success

X0 X1

rd A

Forward

progress

wr A

rd A
wr A

check

check

check

rd A

check

commit
check

commit
check

restart

rd A
wr A

commit
check

T
IM

E

commit
check

@ Christos Kozyrakis 10HotChips 2006, Mult-core Programming Tutorial

Conflict Detection Tradeoffs

1. Eager or encounter or pessimistic

+ Detect conflicts early

� Lower abort penalty, turn some aborts to stalls

– No forward progress guarantees, more aborts in some cases

– Locking issues (SW), fine-grain communication (HW)

2. Lazy or commit or optimistic

+ Forward progress guarantees

+ Potentially less conflicts, no locking (SW), bulk

communication (HW)

– Detects conflicts late

@ Christos Kozyrakis 11HotChips 2006, Mult-core Programming Tutorial

Implementation Space

No convergence yet

Decision will depend on

� Application characteristics

� Importance of fault tolerance & strong atomicity

� Success of contention managers, implementation complexity

May have different approaches for HW, SW, and hybrid

HW: Stanford TCC

SW: Sun TL/2

HW: --

SW: --Optimistic

HW: MIT LTM, Intel VTM

SW: MS-OSTM

HW: UW LogTM

SW: Intel McRT, MS-STMPessimistic

C
o

n
flic

t

D
e
te

c
tio

n

LazyEager

Version Management

[This is just a subset of proposed implementations]

@ Christos Kozyrakis 12HotChips 2006, Mult-core Programming Tutorial

Conflict Detection Granularity

Object granularity (SW/hybrid)

+ Reduced overhead (time/space)

+ Close to programmer’s reasoning

– False sharing on large objects (e.g. arrays)

– Unnecessary aborts

Word granularity

+ Minimize false sharing

– Increased overhead (time/space)

Cache line granularity

+ Compromise between object & word

+ Works for both HW/SW

Mix & match best of both words

� Word-level for arrays, object-level for other objects, …

@ Christos Kozyrakis 13HotChips 2006, Mult-core Programming Tutorial

Advanced Implementation Issues

Atomicity with respect to non-transactional code

� Weak atomicity: non-commited transaction state is visible

� Strong atomicity: non-committed transaction state not visible

Nested transactions

� Common approach: subsume within outermost transaction

� Recent: nested version management & conflict detection

Support for PL & OS design

� Conditional synchronization, exception handling, …

� Key mechanisms: 2-phase commit, commit/abort handlers,

open nesting

See paper by McDonald et.al at ISCA’06

HTM: Hardware Transactional

Memory Implementations

Christos Kozyrakis

Computer Systems Laboratory

Stanford University

http://csl.stanford.edu/~christos

@ Christos Kozyrakis 15HotChips 2006, Mult-core Programming Tutorial

Why Hardware Support for TM

Performance

� Software TM starts with a 40% to 2x overhead handicap

Features

� Works for all binaries and libraries wo/ need to recompile

� Forward progress guarantees

� Strong atomicity

� Word-level conflict detection

How much HW support is needed?

� This is the topic of ongoing research

� All proposed HTMs are essentially hybrid

Add flexibility by switching to software on occasion

@ Christos Kozyrakis 16HotChips 2006, Mult-core Programming Tutorial

HTM Implementation Mechanisms

Data versioning in caches

� Cache the write-buffer or the undo-log

� Zero overhead for both loads and stores

� Works with private, shared, and multi-level caches

Conflict detection through cache coherence protocol

� Coherence lookups detect conflicts between transactions

� Works with snooping & directory coherence

Notes

� HTM support similar to that for thread-level speculation (TLS)

Some HTMs support both TM and TLS

� Virtualization of hardware resources discussed later

@ Christos Kozyrakis 17HotChips 2006, Mult-core Programming Tutorial

HTM Design

Cache lines annotated to track read-set & write set

� R bit: indicates data read by transaction; set on loads

� W bit: indicates data written by transaction; set on stores

R/W bits can be at word or cache-line granularity

� R/W bits gang-cleared on transaction commit or abort

� For eager versioning, need a 2nd cache write for undo log

Coherence requests check R/W bits to detect conflicts

� E.g. shared request to W-word is a read-write conflict

� E.g. exclusive request to W-word is a write-write conflict

� E.g. exclusive request to R-word is a write-read conflict

V D E Tag R W Word 1 R W Word N. . .

@ Christos Kozyrakis 18HotChips 2006, Mult-core Programming Tutorial

HTM Example

T1 copies foo into bar

T2 should read [0, 0] or should read [9,7]

Assume HTM system with lazy versioning & optimistic detection

atomic {

bar.x = foo.x;

bar.y = foo.y;

}

T1 atomic {

t1 = bar.x;

t2 = bar.y;

}

T2

0 0

0 0

0 0

0 0

R WTag

CACHE 1

0 0

0 0

0 0

0 0

R WTag

MEMORY

x=9, y=7

x=0, y=0

foo

bar

CACHE 2

@ Christos Kozyrakis 19HotChips 2006, Mult-core Programming Tutorial

HTM Example (1)

Both transactions make progress independently

atomic {

bar.x = foo.x;

bar.y = foo.y;

}

T1 atomic {

t1 = bar.x;

t2 = bar.y;

}

T2

1 0 9

0 1 9

0 0

0 0

R WTag

CACHE 1

0 0

0 0

0 0

0 0

R WTag

MEMORY

x=9, y=7

x=0, y=0

foo

bar

CACHE 2

foo.x

bar.x

@ Christos Kozyrakis 20HotChips 2006, Mult-core Programming Tutorial

HTM Example (2)

Both transactions make progress independently

atomic {

bar.x = foo.x;

bar.y = foo.y;

}

T1 atomic {

t1 = bar.x;

t2 = bar.y;

}

T2

1 0 9

0 1 9

0 0

0 0

R WTag

CACHE 1

1 0 0

0 1 0

0 0

0 0

R WTag

MEMORY

x=9, y=7

x=0, y=0

foo

bar

CACHE 2

foo.x

bar.x

bar.x

t1

@ Christos Kozyrakis 21HotChips 2006, Mult-core Programming Tutorial

HTM Example (3)

Transaction T1 is now ready to commit

atomic {

bar.x = foo.x;

bar.y = foo.y;

}

T1 atomic {

t1 = bar.x;

t2 = bar.y;

}

T2

1 0 9

0 1 9

1 0 7

0 1 7

R WTag

CACHE 1

1 0 0

0 1 0

0 0

0 0

R WTag

MEMORY

x=9, y=7

x=0, y=0

foo

bar

CACHE 1

foo.x

bar.x

bar.x

t1

foo.y

bar.y

@ Christos Kozyrakis 22HotChips 2006, Mult-core Programming Tutorial

HTM Example (3)

T1 updates shared memory

� R/W bits are cleared

� This is a logical update, data may stay in caches as dirty

Exclusive request for bar.x reveals conflict with T2

� T2 is aborted & restarted; all R/W cache lines are invalidated

� When it reexecutes, it will read [9,7] without a conflict

atomic {

bar.x = foo.x;

bar.y = foo.y;

}

T1 atomic {

t1 = bar.x;

t2 = bar.y;

}

T2

0 0 9

0 0 9

0 0 7

0 0 7

R WTag

CACHE 1

1 0 0

0 1 0

0 0

0 0

R WTag

MEMORY

x=9, y=7

x=9, y=7

foo

bar

CACHE 2

foo.x

bar.x

bar.x

t1

foo.y

bar.y

Excl bar.x
Excl bar.y

Conflict

@ Christos Kozyrakis 23HotChips 2006, Mult-core Programming Tutorial

Warehouse

stockTable

(B-Tree)

itemTable

(B-Tree)

Performance Example: SpecJBB2000

3-tier Java benchmark

Shared data within and across warehouses

� B-trees for database tier

Can we parallelize the actions within a warehouse?

� Orders, payments, delivery updates, etc

orderTable

(B-Tree)
District

Warehouse

newIDTransaction

Manager

Driver Threads

Driver Threads

Client Tier Transaction Server Tier Database Tier

stockTable

(B-Tree)

itemTable

(B-Tree)

@ Christos Kozyrakis 24HotChips 2006, Mult-core Programming Tutorial

Sequential Code for NewOrder

TransactionManager::go() {

// 1. initialize a new order transaction

newOrderTx.init();

// 2. create unique order ID

orderId = district.nextOrderId(); // newID++

order = createOrder(orderId);

// 3. retrieve items and stocks from warehouse

warehouse = order.getSupplyWarehouse();

item = warehouse.retrieveItem(); // B-tree search

stock = warehouse.retrieveStock(); // B-tree search

// 4. calculate cost and update node in stockTable

process(item, stock);

// 5. record the order for delivery

district.addOrder(order); // B-tree update

// 6. print the result of the process

newOrderTx.display();

}

Non-trivial code with complex data-structures

� Fine-grain locking difficult to get right

� Coarse-grain locking no concurrency

@ Christos Kozyrakis 25HotChips 2006, Mult-core Programming Tutorial

Transactional Code for NewOrder

TransactionManager::go() {

atomic { // begin transaction

// 1. initialize a new order transaction

// 2. create a new order with unique order ID

// 3. retrieve items and stocks from warehouse

// 4. calculate cost and update warehouse

// 5. record the order for delivery

// 6. print the result of the process

} // commit transaction

}

Whole NewOrder as one atomic transaction

� 2 lines of code changed

Also tried nested transactional versions

� To reduce frequency & cost of violations

@ Christos Kozyrakis 26HotChips 2006, Mult-core Programming Tutorial

HTM Performance

Simulated 8-way CMP with TM support

� Stanford’s TCC architecture

� Lazy versioning and optimistic conflict

detection

Speedup over sequential

� Flat transactions: 1.9x

Code similar to coarse-grain locks

Frequent aborted transactions due to

dependencies

� Nested transactions: 3.9x to 4.2x

Reduced abort cost OR

Reduced abort frequency

See paper in [WTW’06] for details

� http://tcc.stanford.edu

0

10

20

30

40

50

60

flat

transactions

nested 1 nested 2

N
o

rm
a

li
z
e

d
 E

x
e

c
.
T

im
e

 (
%

)

Aborted

Successful

@ Christos Kozyrakis 27HotChips 2006, Mult-core Programming Tutorial

HTM Virtualization (1)

Hardware TM resources are limited

� What if cache overflows? Space virtualization

� What if time quanta expires? Time virtualization

� HTM + interrupts, paging, thread migrations, …

HTM virtualization approaches

1. Dual TM implementation [Intel@PPoPP’06]

Start transaction in HTM; switch to STM on overflow

Carefully handle interactions between HTM & STM transactions

Typically requires 2 versions of the code

2. Hybrid TM [Sun@ASPLOS’06]

HTM design is optional

Hash-based techniques to detect interaction between HTM & STM

@ Christos Kozyrakis 28HotChips 2006, Mult-core Programming Tutorial

HTM Virtualization Approaches (cont)

3. Virtualized TM [Intel@ISCA’05]

� Map write-buffer/undo-log and read-/write-set to virtual memory

They become unbounded; they can be at any physical location

� Caches capture working set of write-buffer/undo-log

Hardware and firmware handle misses, relocation, etc

4. eXtended TM [Stanford@ASPLOS’06]

� Use OS virtualization capabilities (virtual memory)

On overflow, use page-based TM no HW/firmware needed

Overflow either all transaction state or just a part of it

� Works well when most transactions are small

See common case study at HPCA’06

� Smart interrupt handling

Wait for commit Vs. abort transaction Vs. virtualize transaction

@ Christos Kozyrakis 29HotChips 2006, Mult-core Programming Tutorial

Coarse-grain or Bulk HTM Support

Concept

� Track read and write addresses using signatures

Bloom filters implemented in hardware

� Process sets of addresses at once using signature operations

To manage versioning and to detect conflicts

� Adds 2Kbits per signature, 300 bits compressed

Tradeoffs

+ Conceptually simpler design

Decoupled from cache design and coherence protocol

– Inexact operations can lead to false conflicts

May lead to degradation

Depends on application behavior and signature mechanism

See paper by Ceze et.al at ISCA’06

@ Christos Kozyrakis 30HotChips 2006, Mult-core Programming Tutorial

Transactional Coherence

Key observation

� Coherence & consistency only needed at

transaction boundaries

Transactional Coherence

� Eliminate MESI coherence protocol

� Coherence based on R/W bits

� All coherence communication at commit

points

Bulk coherence creates hybrid between

shared-memory and message passing

See TCC papers at [ISCA’04],

[ASPLOS’04], & [PACT’05]

foo() {

work1();

atomic {

a.x = b.x;

a.y = b.y;

}

work2();

}

@ Christos Kozyrakis 31HotChips 2006, Mult-core Programming Tutorial

Hardware TM Summary

High performance + compatibility with binary code,…

Common characteristics

� Data versioning in caches

� Conflict detection through the coherence protocol

Active research area; current research topics

� Support for PL and OS development (see paper [ISCA’06])

Two-phase commit, transactional handlers, nested transactions

� Development and comparison of various implementations

� Hybrid TM systems

� Scalability issues

